
V10.5 Product Overview
Technical Summary, Samples, and Specifications

Table of Contents

An Introduction to CoSort

Data Processing

Data Presentation

Data Protection

Data Prototyping

CoSort Users & Uses

Compatible Applications

CoSort Package Contents

Sort Control Language Program (SortCL)

Functionality

Invocation

Operation

Application Sample #1

Application Sample #2

Application Sample #3

Application Sample #4

IRI Workbench

Job Wizards, Dialogs, Diagrams and Syntax-Aware Script Editing

ODBC-Connected (DB Table) Data Sources and Targets

Metadata Discovery

Metadata Conversion

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 1

SortCL Command Set

Metadata Conversion Tools

About SortCL Metadata

Third-Party Metadata

Sort Program Conversions

Unix Sort Replacement (bin/sort)

COBOL Migration Tools

Sorting and Migrating COBOL Data

Accelerating Native Sort Calls

Sorting and Converting Index, Variable Length & Blocked Files

Generating Reports

Protecting Sensitive Data

Creating Safe COBOL Test Data

Auditing Data and Applications

Application Programming Interfaces (APIs)

Integrating Sort/Merge Operations Only

Integrating Multiple Transformation Functions

System Tuning

Threads

Memory Allocation

Block Size

Workfile Compression and Storage

Record Terminator

Century Window

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 2

Pause / Resume

Runtime Monitoring

Execution Log

Audit Log

Technical Specifications

Installation

Invocation

Ease of Use

Resource Control (See System Tuning above)

Input and Output

Record Selection and Grouping

Sort Key Processing

Record Reformatting

Field Reformatting & Validation

Field Masking

Record Aggregation

Licensing Information

Professional Services

Company Background

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 3

An Introduction to CoSort
Since 1978, CoSort has been meeting the growing data manipulation needs of companies
with high-volume flat-file, database and data warehouse installations. CoSort is also a
favored solution for legacy sort and data migrations to Unix and Windows.

IRI has worked to make CoSort the most widely licensed commercial sort product on open
systems, and is heavily focused on the development of related data manipulation technologies.

CoSort is now a performance-enhancing solution for many applications, the basis for IRI’s
structured data processing product line, and serves a single-pass platform for large-scale:

Data Processing Transformation, Migration, Cleansing, etc.

Data Presentation Data Wrangling and Reporting

Data Protection Data Masking, Encryption, etc.

Data Prototyping Test Data Generation

Data Processing
The CoSort Sort Control Language (SortCL) program can execute parallel data transformations
to integrate, stage, and convert large data volumes. In just one I/O pass and job script, SortCL
can:

select, sort/merge, join, lookup, convert data types and endian, file formats,
re-map/reformat, pivot, sequence, calculate, aggregate, manage sub-strings, scrub,
encrypt, de-identify, and perform complex transforms

Sources and targets include compressed, flat and index files, pipes, tables via Open Database
Connectivity (ODBC), and custom procedures.

Data Presentation
SortCL users can output the results of the above processes into one or more detail and
summary reports. Users can combine joins, cross-calculations, hash lookups, and
conditional selection to generate formatted reports and subsets for: billing operations,
customer segmentation, change data capture, forensic data analysis, and business
intelligence tools. Formatting may include special field and file layouts, headers and footers,
page numbers, environment values, embedded HTML tags (for web posting), and the
conversion of data into CSV or XML for hand-offs to BI and analytic tools.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 4

https://www.iri.com/blog/iri/business/iri-product-nomenclature-architecture/
http://www.iri.com/products/cosort/sortcl

Data Protection
SortCL, and the spin-off data masking product IRI FieldShield, can secure sensitive data at the
field level, based on business rules. Functions include 256-bit AES format-preserving
encryption and de-identification, and data masking techniques to anonymize, obfuscate,
pseudonymize, or redact fields. Additional encryption or security functions are also available
through custom field transforms. Securing data at the field level (during or after processing
and presentation) is faster, and leaves non-sensitive file, disk and database data available.

Data Prototyping
SortCL, and the spin-off test data product IRI RowGen, can randomly create or select test field
data and display it in real (production) file and report formats. You can create any number,
type, and size of files, records and value ranges necessary to safely simulate reality and
stress-test applications. Uses include database and ETL tool population, benchmarking,
application development, and outsourcing.

Figure 1 | CoSort Single-Pass Data Manipulation Flow Diagram

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 5

http://www.iri.com/products/fieldshield
http://www.iri.com/products/rowgen

CoSort Users & Uses
CoSort is a general-purpose, high-performance processor of sequential data in a variety of
formats. It also serves as a migration platform for legacy data and sort programs, while also
supporting business intelligence, ETL, and data governance operations. CoSort reduces
runtimes, risks, and complexity for a variety of IT and business users.

Job Function CoSort Deliverables and Benefits

IT Manager ● Legacy sort software migration and modernization tools
● Universal flat-file format, and data type, conversion capabilities
● Detail and summary batch reporting with optional dashboard
● Codes and runs faster than Perl, shell, SQL, ETL, and COBOL jobs
● Affordable price points and flexible licensing policies

DBA ● Parallel pre-sorts improve load, reorg, and query performance
● Combined sort, join, and aggregate transformations offline
● External batch and delta reports that are faster/easier than SQL
● Flat-file lookups offer discrete, offline, one-to-many solutions
● Shared metadata with Fast Extract (FACT), FieldShield, and RowGen

Data Warehouse
(ETL) Designer

● Plug-in sort accelerators for DataStage and Informatica
● Multi-threaded transformations in the file system for data staging
● Complex selection and expression logic for data integration
● Easy, open metadata and converters interface with existing tools
● Integrated protection, custom transforms, and in/out procedures

BI Architect ● Fast aggregation and filtering wrangles (big) data for BI tools
● Embedded reporting with many formatting functions, including PCRE
● Field-level protections enable compliant segmentation reports
● Web log and IPA data handling facilitate clickstream analysis
● Change data capture (delta) reporting using joins and selection

CISO, Data
Governance or
Compliance
Officer

● Field-level anonymization, de-ID, encryption, pseudonymization
● Protection functions can run within transform and reporting jobs
● Query-ready XML audit log of job details help verify compliance
● Quality and safety improvements for Master Data held in flat files
● Support for many COBIT control objectives

Application
Developer (ISV)

● Thread-safe API libraries for embedded parallel sorts, transforms
● Serial and parallel system calls to the SortCL program
● Access to included encryption libraries protect real-time data flows
● Built-in test data generation capabilities (RowGen functionality)
● Affordable licensing, customized to individual business models

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 6

Compatible Applications

In addition to CoSort, many other IRI products create or leverage the metadata of the CoSort
SortCL language to define the layouts and manipulation of data in the various fit-for-purpose
contexts described below.

Note that CoSort, and all the listed products, also include and share the same free graphical
integrated development environment (IDE) for (SortCL-based) job design and scheduled
deployment called IRI Workbench™.

Built on Eclipse™, IRI Workbench facilitates the specification, execution, tuning, and
maintenance of SortCL job scripts through job creation and metadata definitions wizards,
workflow and transform mapping diagrams, and a syntax-aware editor with dialog-supporting
outline for manual specification.

IRI Workbench also provides database access, viewing, and integration with SortCL and other
jobs. It includes extensions for team contributions, job version control, and remote system data
and execution.

IRI Voracity®
Data Management

Consolidates the discovery, integration (ETL, CDC, SCD), migration,
governance, and analytics of data in big and small structured data
sources on-premise or in the cloud. A Hadoop edition of Voracity
can also seamlessly convert and interchangeably run many CoSort
SortCL jobs in MapReduce 2, Spark, Spark Stream, Storm or Tez.
Voracity includes wizards for CoSort and all the products below..

IRI FACT™
Fast Extract

Unloads very large database (VLDB) tables to flat files in parallel for
off-line archival, data transformation, reporting, migration, and
reloads. FACT can work through metadata and pipes with the
CoSort SortCL program to perform fast reorg, replication,
encryption, ETL, and BI operations, all in one I/O pass.

IRI FieldShield®
Data Masking

De-identifies personally identifiable information (PII) and other
sensitive data in ODBC-connected database tables or popular file
formats with multiple functions, including: encryption, blurring,
hashing, pseudonymization, randomization, and tokenization.

IRI RowGen®
Test Data

Uses SortCL syntax to create safe test data in real file, report, and
table formats for prototypes, DevOps, benchmarking, etc.

IRI NextForm®
Data Migration

Converts database tables, file formats, field data, and endian types
for data, database, application, and platform migration projects.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 7

http://www.iri.com/products/workbench
http://www.iri.com/products/voracity
https://www.iri.com/products/fact
https://www.iri.com/products/fieldshield
https://www.iri.com/products/rowgen
https://www.iri.com/products/nextform

Following are examples of third-party products with which IRI maintains various levels of
compatibility to enhance their operational performance or data protection capabilities via CoSort
SortCL functionality:

Hadoop CoSort can read and write files to/from the Hadoop File System (HDFS) via a
SortCL /INFILE URL specification. Many SortCL jobs can also run in Hadoop
through the Voracity gateway for Hadoop.

Oracle CoSort can source and target Oracle tables via ODBC or OCI to the file system
(using FACT and SQL*Loader). On this data, CoSort can:

● Transform, cleanse, and integrate Oracle and other data
● Capture changed data (generate delta reports)
● Mask (column-level encryption, redaction, etc.)
● Perform index load pre-sorts (on the longest table key)

By pre-sorting, CoSort can improve the speed and efficiency of SQL*
Loader (and other RDB load utility) operations, and thus reorgs and queries on
pre-CoSorted tables. CoSort and related jobs can also be triggered or invoked
by Oracle Job Scheduler.

IBM DB2 Source and target DB2 tables via ODBC or the file system (using FACT and
DB2 Load), to do the jobs above. Also, the CoSort Load Accelerator for DB2
(CLA4DB2) speeds bulk loads up to UDB Version 9.5.

MS SQL Server Performs many of the same functions as SQL in SortCL, up to 10x faster.

MongoDB Use SortCL to transform, migrate, mask or prototype MongoDB collections.

IBM InfoSphere
DataStage

Run the CoSort SortCL program in a DataStage sequential file stage or as a
before-job subroutine for larger sort, join, and aggregation jobs. SortCL
transforms data in a one fast external pass which requires no partitioning or
memory juggling, and can also include data cleansing, masking, reporting, etc.

Informatica
PowerCenter

Push the largest data transformations down to CoSort SortCL programs in the
file system as workflow command tasks. This approach is more efficient than
Informatica-recommended “pushdown optimization” into Oracle, and far less
expensive than Teradata, Ab Initio, DMExpress, etc.

Pentaho (PDI) Similar to the above, calling CoSort into Kettle speed sorts jobs dramatically.

KNIME Wrangle in, and display data from, CoSort SorCL jobs in IRI Workbench. Te.
CoSort users with the Voracity Data (Job Source) Provider Node for KNIME
can feed data mining, machine learning, and other data science nodes with
CoSort-wrangled data in the same workflow.

Splunk Index and analyze data in Splunk immediately with data prepared and
protected by SortCL via the IRI add-on for Splunk, the Voracity app for Splunk,
or through Splunk Universal Forwarder.

Proxy Coupling Seamlessly offload z/OS JCL sort steps to SortCL on z/Linux or another ‘open
system’ platform via Proximal Systems “PSCsort” technology.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 8

https://www.iri.com/solutions/big-data/hadoop-optional
https://www.iri.com/solutions/database-acceleration/oracle
http://www.iri.com/blog/data-transformation2/automate-iri-data-integration-jobs-oracle-job-scheduler/
https://www.iri.com/solutions/database-accelearation/DB2
http://www.iri.com/solutions/database-acceleration/sql-server
https://www.iri.com/solutions/database-acceleration/mongodb
https://www.iri.com/solutions/data-integration/etl-tool-acceleration/datastage
https://www.iri.com/solutions/data-integration/etl-tool-acceleration/datastage
https://www.iri.com/solutions/data-integration/etl-tool-acceleration/informatica
https://www.iri.com/solutions/data-integration/etl-tool-acceleration/informatica
https://www.iri.com/blog/data-transformation2/cosort-speed-sort-process-pentaho/
https://www.iri.com/solutions/business-intelligence/knime
https://www.iri.com/solutions/business-intelligence/splunk
http://www.iri.com/news/press-releases/iri-proximal-systems-transparently-offload-mainframe-sorting

CoSort Package Contents
The CoSort package contains standalone utilities, file layout metadata and sort parameter
converters, third-party sort replacements, API libraries, and documentation. The core utility
programs are:

● SortCL - the fourth-generation Sort Control Language program for defining data and
manipulations with syntax and semantics familiar to both mainframe sort and SQL
users. The most comprehensive interface in the CoSort package, SortCL combines
multiple data transformation functions (sorting, joining, aggregation, filtering, remapping,
etc.) with cleansing, reporting and masking for: file compare and change data capture,
data type and file format conversions, data warehouse integration and staging (ETL), BI
reporting and analytic data wrangling, delta and summary targets, plus data and
database migration, replication, federation, and compliance with data privacy laws.

● Sort - a drop-in replacement for the Unix sort command that runs faster and scales
linearly. It runs on all Unix and Windows (unixsort.exe) platforms.

SortCL recognizes environment variables and supports pipes and brokered data streams to
allow data to flow between processes without additional I/O. SortCL may also be customized
with user exit procedures for special input, output, or comparison criteria. SortCL job creation,
modification, sharing and execution is supported in IRI Workbench.

These metadata converters leverage existing data source layout information:

● cob2ddf translates COBOL copybook layouts to SortCL data definitions
● csv2ddf translates Microsoft .csv. File headers to SortCL data definitions
● ctl2ddf translates Oracle SQL*Loader control file layouts to SortCL data definitions
● elf2ddf translates web logs in W3C “ Extended Log Format” to SortCL data definitions
● ldif2ddf translates LDIF layouts to SortCL data definitions
● xml2ddf translates XML formats to SortCL data definitions
● xls2ddf translates XLS/X spreadsheet column headers to SortCL data definitions
● odbc2ddf converts database table layouts into a SortCL data definition file (.ddf)

The above utilities are also supported graphically in IRI Workbench, which also produces DDF
for JSON and MongoDB sources (command line utility development is pending). In addition:

● MIMB (from MITI) translates many application file layouts to SortCL data definitions
● The DataSwitch no-code platform or Mapping Manager (from erwin) create SortCL

data and job metadata from scratch, or convert to it from third-party ETL tool mappings.

These sort parameter conversion utilities facilitate legacy sort migrations:

● mvs2scl translates MVS JCL sort cards to SortCL job specifications
● sorti2scl translates SortI parameters to SortCL job specifications
● vse2scl translates VSE JCL sort cards to SortCL jobs specifications

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 9

https://www.iri.com/blog/data-transformation2/xls2ddf-metadata-conversion-utility/
http://www.iri.com/solutions/data-integration/replatform-etl

The following third-party sort replacements are available with the CoSort package:

● acu-cosort - a drop-in replacement for the sort verbs supplied with ACUCOBOL-GT
● cla4db2 - the “ CoSort Load Accelerator for DB2” replaces IBM’s sort routine within the

UDB 5-8 loader, as much as doubling throughput on Unix
● mf-cosort - a drop-in replacement for the sort verbs supplied with Micro Focus Net

Express, Server Express, and Workbench on Unix and Windows. COBOL users can link
statically and dynamically to mfcosort and the CoSort engine to accelerate sort speed
and reduce temporary sort space in new executables or a full RTS

● nat-sort - a drop-in replacement for the sort verb in Software AG natural
● proc-sort - SAS System 7-9 users can link dynamically to shared cosort() libraries to

replace the sort function in SAS on Unix systems

CoSort provides similar drop-in sort replacement facilities for Tetrad OPX and the UniKix
Mainframe Batch Manager. CoSort hooks are also available for the ETI Solution, Cincom
Control:Manufacturing, Kalido’s Dynamic Information Warehouse, and DataStreams (Korea)
TeraStream ETL suite.

For developer and Independent Software Vendor (ISV) use, CoSort also includes two
Application Programming Interface (API) libraries:

● cosort_r() - a thread-safe version of the original cosort() API that allows multiple
coroutine sort/merge operations to occur in the same pass through the data. The
coroutine engine allows in-memory record transfers between programs and the sort.

● sortcl-routine() - the thread-safe SortCL library that allows programmers to exploit the
full range of CoSort Sort Control Language commands within their own programs.

CoSort APIs let you define any input (selection), compare (order sequence), or output
(reporting) criteria, enabling applications to accomplish complex jobs in one I/O pass. You can
write calls to either library in any language that can link to a C library, such as C++, COBOL, VB,
Java, etc.

Finally, the CoSort package also includes the following documentation:

● Installation Guide - platform-specific loading, licensing, and configuration advice
● Manual - a full user and programmer documentation for all the above interfaces
● Job Examples - sample SortCL job scripts, metadata conversions, and API calls
● Best Practices - tips and tricks for job scripting and tuning

IRI Workbench also provides online material for CoSort users as follows:

● Platform Overview - a basic primer in the Welcome section for orientation purposes
● Reference - a set of hyperlinking content available under “Tools User Guides”
● Cheat Sheet - an interactive step-by-step ‘Getting Started’ wizard built on Eclipse
● Dialog Help - context-specific instructions for each job parameter on every page

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 10

Sort Control Language Program (SortCL)
Well beyond traditional sort/merge operations, CoSort provides a broad range of big data
manipulation and management functions for data warehousing, legacy migration, and business
intelligence projects through its fourth-generation Sort Control Language (SortCL) and program.

Functionality
SortCL allows end-users and developers to perform the following:

Function Actions

Filter At the byte, field, and record level, plus duplicate removal and saving

Segment Conditional (include/omit) selection with if-then-else, else-if logic

Sort Multiple keys, directions, sequences

Merge Two or more pre-sorted files

Join (Match) Two or more un/sorted files on many conditions for file compares and change data
captures (deltas)

Aggregate Parallel roll-up and drill-down sum, min, max, average, and count values.
Accumulate (Running). Rank. Lead and Lag (Windowing).

Check Verify source data is pre-sorted prior to sort or join operations

Re-Map Resize, reposition, and realign fields

Convert Change data types, file formats, endian states, and database (vendor/version)
tables

Re-Format Convert between file formats (e.g., Text <> XML, VS <> RS, ISAM <> Vision,
LDIF <> CSV

Pivot / Unpivot De-normalize and normalize dimensional layouts

Cleanse De-duplicate, validate, homogenize, filter, find/replace, and re-structure

Enrich Integrate and segment data enhance row and column detail. Create new data
forms and layouts through conversions, calculations and expressions, and
composites (templates).

Mask De-identify PII at the field level via encryption, pseudonymization, redaction, etc.

Calculate Math and trig functions across detail and summary rows

Function Actions

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 11

https://www.iri.com/solutions/data-transformation/select-filter
https://www.iri.com/solutions/data-transformation/select-filter
https://www.iri.com/solutions/data-transformation/sort-merge
https://www.iri.com/solutions/data-transformation/sort-merge
https://www.iri.com/solutions/data-transformation/match-join
https://www.iri.com/solutions/data-transformation/aggregate
http://www.iri.com/solutions/data-transformation/remap-reformat
https://www.iri.com/solutions/data-and-database-migration
https://www.iri.com/solutions/data-transformation/remap-reformat
https://www.iri.com/solutions/data-transformation/pivot
https://www.iri.com/solutions/data-transformation/scrub-cleanse
https://www.iri.com/solutions/data-integration/data-quality
https://www.iri.com/solutions/data-masking
https://www.iri.com/solutions/data-transformation/cross-calculate

Sub-string Bit-level manipulations and PCRE for pattern matching and replacement, etc.

Validate Verify characters and fields match their specifications (i.e. “isascii”, gap analysis)

Sequence For custom indexing, reporting, and database load operations

Set Lookup Discrete field substitutions, pseudonymization, etc. using “ set” file field dimensions

Fuzzy Search For slowly changing dimension (SCD) reporting

Federate Get discrete (lookup) values and virtualize results via reports and replicas

Test Create randomly-generated or set-selected (safe) test data fields

Report Custom-formatted, segmented detail, and summary targets

Replicate Copy, manipulation, and move data from one or more sources to one or more targets

Custom Complex field-level user functions (e.g., 3rd-party DQ libraries)

SortCL can support the combination of these functions all in one job script and I/O pass through
multiple data sources and targets. By running multiple data manipulations at once, SortCL1

helps you:

● Package, protect, and provision big data without Hadoop
● Filter, integrate, and stage data for DW, ODS, BI, data marts, and spreadmarts
● Replace slower 3GL, shell, Perl, and SQL procedures
● Transform high volumes outside BI, DB, and ETL tools
● Relieve applications and system overhead
● Generate custom detail, delta, and summary reports
● Accelerate bulk database reorgs and loads
● Detect, capture, and audit changed data
● Consolidate data privacy with transformation and reporting

SortCL uses a self-documenting Data Definition Language (DDL) and Data Manipulation
Language (DML) syntax that is familiar to both mainframe sort and SQL users. SortCL DDL
repositories or data definition files (DDF) can be centralized and re-used. By supporting the
separation of data definition and manipulation statements, SortCL supports the use of shared
metadata and the independence of data from applications.

1 With the IRI Fast Extract (FACT) utility, bulk flat-file input can come from RDBMS table unloads (instead of ODBC).

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 12

https://www.iri.com/solutions/data-transformation/substrings
https://www.iri.com/solutions/data-integration/data-quality
https://www.iri.com/solutions/data-transformation/table-lookups
http://www.iri.com/solutions/business-intelligence/embedded-bi/slowly-changing-dimensions
https://www.iri.com/solutions/data-integration/data-federation
https://www.iri.com/solutions/test-data
https://www.iri.com/solutions/business-intelligence/embedded-bi
https://www.iri.com/solutions/data-and-database-migration/replication
https://www.iri.com/solutions/data-transformation/custom-transforms
http://www.iri.com/products/fact

Invocation
SortCL job scripts can be invoked from:

● The command line
● IRI Workbench
● A batch process
● Any job scheduler / workflow automation tool
● A thread-safe SortCL API (sortcl_routine) call

Application-level statistics can be output with each job, either to the screen or a file. In addition,
the CoSort job log runs in a self-appending file and sends debugging information into a
self-replacing file. On-screen monitoring options are available at various verbosity levels for
runtime progress assessment. You can also enable and secure an XML audit log file to validate
compliance and performance forensic application and data analysis.

Users converting from legacy sort products can leverage included metadata conversion tools
and available IRI services to ease job script migrations to SortCL. See METADATA
CONVERSION TOOLS.

Operation
One of the most basic SortCL scripts that you can write contains only an infile and an outfile, as
shown in the following:

/infile=accts695

/outfile=accts695.new

This simply sorts the accounts695 file from left to right without reformatting.

SortCL processes data in three phases: input, action (processing), and output. In the input
phase, source records are processed with selection. Actions are sort, merge, join, report, or
check. In the output phase, selected records are remapped to one or more targets
simultaneously. Derived fields, aggregates, additional filters, and multiple formats can be
conditionally defined in the same target. A special “inrec” section is defined when a virtual
record layout is needed for processing input sources that are formatted differently.

SortCL also has the ability to perform and combine many more data transformations, as well as
protect data at risk and produce formatted reports, all at the same time. Through the use of
metadata repositories -- SortCL DDFs -- you can define and share any structured data subset or
relational view in the SortCL job specification files (.SCL) that reference the DDFs. Those file
layouts can be re-used in many applications.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 13

Application Sample #1
Sort and Reformat, Metadata Repository

This SortCL job script is a simple, two-key sort job. A single, flat input file is specified directly in
the script. In addition to re-ordering the data, this script will convert the file layout from a
pipe-delimited format to fixed position fields. Notice, however, that the fixed output field
definitions are stored in this reusable SortCL “data definition file” metadata repository:

Data Definition File chiefs.ddf

/FIELD=(president,POS=1,SIZE=22)
/FIELD=(service,POS=25,SIZE=9)
/FIELD=(state,POS=40,SIZE=2)
/FIELD=(party,POS=45,SIZE=3)

Input File 1 chiefs_10_sep

Eisenhower, Dwight D.|134|1953-1961|REP|TX
Kennedy, John F.|135|1961-1963|DEM|MA
Johnson, Lyndon B.|136|1963-1969|DEM|TX
Nixon, Richard M.|137|1969-1973|REP|CA
Ford, Gerald R.|138|1973-1977|REP|NE
Carter, James E.|139|1977-1981|DEM|GA
Reagan, Ronald W.|140|1981-1989|REP|IL
Bush, George H.W.|141|1989-1993|REP|TX
Clinton, William J.|142|1993-2001|DEM|AR
Bush, George W.|143|2001-2009|REP|TX

CoSort SortCL Job Specification

Input Phase
/INFILE=chiefs_10_sep

/FIELD=(president,POSITION=1,SEPARATOR=‘|’)
/FIELD=(votes,POSITION=2,SEPARATOR=‘|’)
/FIELD=(service,POSITION=3,SEPARATOR=‘|’)
/FIELD=(party,POSITION=4,SEPARATOR=‘|’)
/FIELD=(state,POSITION=5,SEPARATOR=‘|’)

The job script to the right uses explicit layouts
for the input, but relies on the metadata file,
chiefs.ddf, for the output layout. By centralizing
the metadata, it can be used in other SortCL
job scripts.

Action Phase
/SORT

/KEY=party
/KEY=president

Output Phase
/OUTFILE=chiefs.out

/SPECIFICATION=chiefs.ddf # metadata

SortCL job scripts are typically run from a batch script with a command entry similar to:

$COSORT_HOME/bin/sortcl /SPECIFICATION=/path2/example1.scl

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 14

Output File 1 chiefs.out

Carter, James E.
Clinton, William J.
Johnson, Lyndon B.
Kennedy, John F.
Bush, George H.W.
Bush, George W.
Eisenhower, Dwight D.
Ford, Gerald R.
Nixon, Richard M.
Reagan, Ronald W.

1977-1981
1993-2001
1963-1969
1961-1963
1989-1993
2001-2009
1953-1961
1973-1977
1969-1973
1981-1989

GA
AR
TX
MA
TX
TX
TX
NE
CA
IL

DEM
DEM
DEM
DEM
REP
REP
REP
REP
REP
REP

The input file, chiefs_10_sep, is now in order by party and president and displayed according to
the fixed position layout specified in chiefs.ddf. Notice that the second input field, votes, was
not in the output file specification, and that the state and party fields were transposed. By
mapping using symbolic field name references, SortCL gives you field-level control of all your
output targets, as the following examples will further demonstrate.

Application Sample #2
Data Transformation and Masking

This SortCL job is an example of a single-key sort. The fields are defined in the input phase, the
sort key in the action phase, and then, in the output phase, a series of target files are defined in
different formats for different departmental purposes. Notice how individual fields are protected
according to different business rules or role based access controls (RBAC).

The input file below was generated with IRI’s RowGen tool to create realistic transaction data.
Note that any number of sources can be input and that these input sources can have any
number of formats. The input sources can files, pipes, and/or procedures. Data integration of
this kind was not demonstrated for the sake of simplicity.

Input File seqdata

01
02
03
04
05
06
07
08
09
10

330170363
421901269
529433545
129737773
594521240
796569799
384127387
711604065
343054521
148354977

Stuart Clay
Taylor Guerrero
Charles Caldwell
Robyn Puckett
Santiago Lindsey
Charles Lindsey
Santiago Puckett
Charles Williams
Jack Velazquez
Donald Cooke

0056681.42
0015019.10
0041116.71
0044558.62
0055836.11
0098525.58
0059036.80
0018645.95
0029205.44
0044121.44

6
9
3
3
0
2
4
1
2
4

cT
MD
NY
ny
TX
TX
NY
Tx
NY
MA

101 B St
1031 Park Ln Apt D
14 Main St
822 Hwy 76
Star Rt Box 822
12746 Wolf Circle
321 Baltic Ct
1103 Fresh Creek Ln
6780 Sand Dr Apt 3A
35 La Palma Dr

B
A
A
B
A
A
B
A
B
A

The following job script products several output files in the same job script and I/O pass, which
includes all 10 records from the above input files (though filters could have been applied:

Sort Control Language (SortCL) Program

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 15

Input Phase

/INFILE=(seqdata) # Reads 1 input file
/FIELD=(idnum,POS=1,SIZE=2) # Unique record identifier tag
/FIELD=(ssno,POS=4,SIZE=9)

Overdefines the social security number into parts for obfuscation
/FIELD=(ssno_part1,POSITION=4,SIZE=1)
/FIELD=(ssno_part2,POSITION=5,SIZE=4,NUMERIC)
/FIELD=(ssno_part3,POSITION=9,SIZE=4,NUMERIC)
/FIELD=(name,POSITION=14,SIZE=20)
/FIELD=(ssno,POSITION=4,SIZE=9)

Defines the last name letter field for conditional selection
/FIELD=(last_name_letter,SEPARATOR=‘ ’,POSITION=4,SIZE=1)
/FIELD=(salary,POSITION=36,SIZE=10,NUMERIC)
/FIELD=(salary2,POSITION=36,SIZE=10) # Redefined as ASCII for encryption
/FIELD=(deduction_no,POSITION=47,SIZE=1)
/FIELD=(state,POSITION=49,SIZE=2)
/FIELD=(address,POSITION=52,SIZE=1)
/FIELD=(group_code,POSITION=75,SIZE=1)
/FIELD=(wholerec,POSITION=1,SIZE=71)

Define a field to be the entire record

Action Phase

/SORT
/KEY=(group_code) # Sort on code field for aggregation
/KEY=(salary) # Sort on salary field

Output Phase

/OUTFILE=testdata # First Output File. Obfuscates data, preserves format
/FIELD=(idnum,POSITION=1,SIZE=2.0,FILL=‘0’,NUMERIC)
/FIELD=(ssno_part1,POSITION=4,SIZE=1)

Obfuscate the next 4 digits through conditional cross-calculation
/FIELD=(ssno_part2_new,POSITION=5,SIZE=4.0,FILL=‘0’,NUMERIC, \

IF ssno_part2 GT 4500 THEN ssno_part2 / 2 ELSE 2 * ssno_part2 - 55)

Obfuscate the final 4 digits
/FIELD=(ssno_part3_new,POS=4,SIZE=4.0,FILL=‘0’, NUMERIC, \

IF ssno_part3 GT 4500 THEN ssno_part3 / 2 ELSE 2 * ssno_part3 - 54)

Create pseudonym of the real name using the lookup table pseudo.set
/FIELD=(name_fake,POSITION=14,SIZE=20,SET=pseudo.set[name])

Make the salaries anonymous using conditional cross-calculation
/FIELD=(salary_new,POSITION=35,SIZE=10.2,NUMERIC, \

IF salary GT 50000.00 THEN 0.85 * salary ELSE 1.15 * salary)
/FIELD=(deducation_no,POSITION=46,SIZE=1)
/FIELD=(state,POSITION=46,SIZE=1)
/DATA=“ ”
/DATA={20}“*” # Masks address data with asterisks

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 16

/OUTFILE=aggregate_salaries_by_group # Summary record format
/FIELD=(total_salary,POSITION=51,SIZE=12,CURRENCY)
/SUM total_salary FROM salary BREAK group_code

/OUTFILE=aggregate_salaries_by_group # Detail record format
/FIELD=(group_code,POSITION=1,SIZE=1)
/FIELD=(name,POSITION=3,SIZE=20)
/FIELD=(address,POSITION=25,SIZE=20)
/FIELD=(TOUPPER(state),POSITION=47,SIZE=2) # Capitalization function
/FIELD=(salary,POSITION=51,SIZE=12,CURRENCY)

OUTFILE=salaries_de_id
De-identify fields using bit manipulation function (to preserve field size)

/FIELD=(idnum,POSITION=1,SIZE=2.0,FILL=‘0’,NUMERIC)
/FIELD=(de_identify(salary,“abc”),POSITION=6,SIZE=10,NUMERIC)
/FIELD=(TOUPPER(state),POSITION=20,SIZE=2)

/OUTFILE=encrypt_all
/FIELD=(encryptAES256(wholerec),POSITION=1) # Default key phrase used

/OUTFILE=encrypt_2fields
Encrypt 2 fields, each with a different key phrase
To determine the size of the encrypted output field:
Increase field size to next multiple of 16 and divide by 3
Round up to the next whole number and multiply by 4

/FIELD=(encryptAES256(ssno,“passphr1”),POSITION=1,SIZE=24)
/FIELD=(name,POSITION=26,SIZE=20)
/FIELD=(encryptAES256(salary2,“passphr2”),POSITION=47,SIZE=24)
/FIELD=(TOUPPER(state),POSITION=73,SIZE=2)

/OUTFILE=report.csv
/PROCESS=CSV # Creates header from fieldnames
/FIELD=(idnum,POSITION=1,SEPARATOR=‘,’,FRAME=‘“‘)
/FIELD=(ssno,POSITION=2,SEPARATOR=‘,’,FRAME=‘“‘)
/FIELD=(name,POSITION=3,SEPARATOR=‘,’,FRAME=‘“‘)
/FIELD(salary,POSITION=4,SEPARATOR=‘,’,FRAME=‘“‘)
/FIELD=(deduction_no,POSITION=5,SEPARATOR=‘,’,FRAME=‘“‘)
/FIELD=(state,POSITION=6,SEPARATOR=‘,’,FRAME=‘“‘)
/FIELD=(address,POSITION=7,SEPARATOR=‘,’,FRAME=‘“‘)
/FIELD=(group_code,POSITION=8,SEPARATOR=‘,’,FRAME=‘“‘)

This job script turns the two input files into six output files, all in one I/O pass. Many more
inputs or outputs, of any size and format, could have been specified, and conditional
selection criteria could have been applied against any source or target. A number of additional
field level transformation functions could also have been specified. For a more complete list
of available data manipulation functions, see the TECHNICAL SPECIFICATIONS chapter.

Outputs from the sample above follow, along with explanations of each:

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 17

Output File 1, testdata

02
08
03
10
05
06
09
04
01
07

443252484
722658076
558317036
124182488
547262426
748284900
385552260
158913886
359790672
342063694

Clifton Jimenez
Jeffery Gomez
Teddy Black
Julio Koch
Spencer Craig
Landen Sullivan
Francisco Duffy
Salvador Jacobson
Ramsey Flynn
ALvaro Mcleod

17271.97
21442.84
47284.22
50739.66
47460.69
83746.74
33586.26
51242.41
48179.21
50181.28

9
1
3
4
0
2
2
3
6
4

MD
Tx
NY
MA
TX
TX
NY
ny
cT
NY

This file shows safe, protected results in the form of similarly formatted test data. The data are
sorted on group_code and then salary prior to the salary being protected; therefore, the salary
order will not appear to be ordered. Note that the social security numbers were obfuscated with
expression logic defined in 2 lines of the SortCL script Par 2 is shown below:

/FIELD=(ssno_part2_new,POSITION=5,SIZE=4.0,FILL=‘0’,NUMERIC, \

IF ssno_part2 GT 4500 THEN ssno_part2 / 2 \

ELSE 2 * ssno_part2 - 55)

and that names were de-identified with pseudonyms in a lookup table called pseudo.set:

/FIELD=(name_fake,POSITION=14,SIZE=20,SET=pseudo.set[name])

SET File, pseudo.set

Charles Caldwell
Charles Lindsey
Charles Williams
Donald Cook
Jack Velazquez
Robyn Puckett
Santiago Lindsey
Santiago Puckett
Stuart Clay
Taylor Guerrero
/default/

Teddy Black
Landen Sullivan
Jeffrey Gomez
Julio Koch
Francisco Duffy
Salvador Jacobson
Spencer Craig
Alvaro Mcleod
Ramsey Flynn
Clifton Jimenez

In the above set file, the ‘real name’ Charles Caldwell is identified with the ‘fake name’ Teddy
Black, and so on. A tab character separates the two names in the lookup table.

Output salaries were anonymized with math functions (which caused the appearance of
disorder in that field). The TOUPPER syntax applied in the state field converted the input values
to all uppercase letters on output; this is one of several built-in data quality functions. Finally, the
last three input fields were redacted and masked with asterisks.

At the same time, this output file (with protected real data) was also produced:

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 18

Output File 2, aggregate_salaries_by_group

A
A
A
A
A
A

B
B
B
B

Taylor Guerrero
Charles Williams
Charles Caldwell
Donald Cooke
Santiago Lindsey
Charles Lindsey

Jack Velazquez
Robyn Puckett
Stuart Clay
Santiago Puckett

1031 Park Ln Apt D
1103 Fresh Creek Ln
14 Main St
35 La Palma Dr
Star Rt Box 822
12746 Wolf Circle

6780 Sand Dr Apt 3A
822 Hwy 76
101 B St
321 Baltic Ct

MD
TX
NY
MA
TX
TX

NY
NY
CT
NY

$15,019.10
$18,645.95
$41,116.71
$44,121.44
$55,836.11
$98,525.58
$273,264.89
$29,205.44
$44,558.62
$56,036.80
$59,036.80
$189,482.28

This is a detail and summary report, grouping records by their group code (A or B). Two
same-named /OUTFILE sections were used: one to define the format of the detail records, and
the other for the summary information. The group totals were derived with this syntax:

/SUM total_salary FROM salary BREAK group_code

Output File 3, salaries_de_id

02
08
03
10
05
06
09
04
01
07

335735<253
335:9872<7
33855592;5
3388545288
3377:69255
33<:74727:
334<437288
338877:294
33799:5284
337<3692:3

MD
TX
NY
MA
TX
TX
NY
NY
CT
NY

This third output file contains the same information, but without the header record. Salaries have
been de-identified with an internal bit manipulation function using the pass code ‘abc’ (which
creates the bit manipulation parameters). This method is akin to, but less secure than,
encryption, but preserves the field size.

Output File 4, encrypt_all

lS7t5h+/s3sUbOs+42pYtkTau2K4kzZMOB4CrvE5QSJes2kvxrYIiWtg3y4VWYT7qIoc/rYwELAux4Gh3Cg9EoWf68OdPh+ATqOJ4xE6/T4=
Xh2nImJY4hBLfwWIDGeR1d0hNCC4Fbtz1UICR31wgr7rQo7byO1fVFGw5mwh+GSbh5OM7icopQ84lNVnODVuw6QpqLJCIpwkrYyjO0wvDFg=
twoxGCkGxWn76wrnHlBMX7V1AdRAqXne1l23i30ljkMhbWkf+K9E6JZ/iJtHElPi90bgeqGJyaXcMRMRHlcQkdV/wLAXJJ2b1Nl6Sz/A8uQ=
O1v4mpIxb+D+egm3MbovHPi1hnlMI67Kmdza38JvfIjEw5/tXLbFC4GllUK1eaaNDYdRuJw8CcV1wf05nJ1wQU5UmXmP8uIqeHW41tFK2Xo=
b7B4w8SWnGaM7gXFC6pGAu1qOwp3aX8vFTkRSmUF57hFLQ9IxmLjd7nqDQKMgPg9SVBvlcB4Jsk13TIL6NKM5J0TCKYIH38aVfcw6cG+LuA=
usnCrehsH109zkzDdCYJnfkTp35IjdgA+p4JXZAF3W4uPlqhieH4fKg5zLxYZPtfA1ThT4oWxNCV9Yb/Ey4m/oTM8CaqFderHAqRQJiqj5c=
e0DUXvL1/axHuLzgxPaCG0w/IT1QKcypks3al9hXCCHGh29yegi3Tp+9/nVGaWxVn/UFBYvuiVOJB1hw9RQuzmJMDsuEnr6zGbpl4gvzrCA=
ysO8dAWoGb2soHkp+W1pML7B2MXR8i5kKjzcHjCnxEqoU5Dtd/GXToy1fuM0CrJfmz3F/oRnlw6YhVlvAc46X+Cr033y0y5eCIrATGFqGkI=
Pe8gYs5l/3z9eQrxobmMo/FHI0c1QboyNy1mtWdWBa4/UekwCssPRnvYh8J17y4PrmE9V94WPTZ3RrL7rijQdz8WzS8ES1taZ/MpVaUJ0Gk=
LR5H66hXx7YtaaNSJRCiwmC2Hssc6YA3VAhSRtUQDWTkF/+vxonCrpR6tP87LphMB/k3hKUD5rxuaJkCLrugfZhD3XiLGDxnuryfOXhPeJo=

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 19

Here, the entire record was declared as a field and encrypted. Notice how the encrypted
‘ciphertext’ results contain only printable ASCII characters for printing and inclusion in text files.

Output File 5, encrypt_2fields

bUWn/CrhAql4MXNxoy7OkA==
8XvhrNe7ecF2DKFZyP4cNw==
pHxUwHhkcXW06JEhoDIlJg==
sAol8DlsqS2viXEMPHullQ==
eGoUczVoZEm95/9eBD8iOQ==
AJJEKjJuJQErVR726ytkZg==
2KcftKVKDv+OCaG/FFdJ6w==
QMCKCxi32a9ZL3cYuBwHew==
CcxB9LuMkdAJ0E3rhwDIuA==
RQVeipLI4xlzvwzskHTE0Q==

Taylor Guerrero
Charles Williams
Charles Caldwell
Donald Cooke
Santiago Lindsey
Charles Lindsey
Jack Velazquez
Robyn Puckett
Stuart Clay
Santiago Puckett

2iyseYtWEd3ESFwE91433Q==
SK8auRS56YxRWMtLTXEGtg==
bCz/W5bEpDpA2KJYDi3xvQ==
kpCZLODnoWFht50aH7u2LQ==
8inKXdYDU4AH9tJx8xlPAg==
Vzm4/kcz/ypUNfWJjBBrcA==
m8MIpOmfPqxtNsO69cV0Mg==
qwn2T7pUF/Hu+YPQBThcwg==
Q/bc3I756EPqn3TAYcqOUA==
9i1fjr3CQs0yjuKV/tVCEw==

MD
TX
NY
MA
TX
TX
NY
NY
CT
NY

The fifth output file, shown above, encrypts the social security number (SSN) and salary fields,
but with two different passphrases so the data is protected for different disclosures.

Output File 6, report.csv

The last output file above, viewed in a spreadsheet, shows how specifying /PROCESS=CSV on
output automatically adds a header record with the output field names. The conversion of the
source records to a comma-separated framework (including the addition of the header record)
allowed the target to be read by Excel without additional processing.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 20

Application Sample #3
Alphanumeric Format-Preserving Encryption

This example uses personal information data, personal_info, including credit card numbers,
driver license numbers, and names.

9654-4338-8732-8128
2312-7218-4829-0111
8940-8391-9147-8291
6438-8932-2284-6262
8291-7381-8291-7489
7828-8391-7737-0822
7834-5445-7823-7843
8383-9745-1230-4820
3129-3648-3589-0848
0583-7290-7492-8375

W389-324-33-473-Q
H583-832-87-178-P
E372-273-92-893-G
L556-731-91-842-J
G803-389-53-934-J
K991-892-02-578-O
F894-895-10-215-N
M352-811-49-765-N
S891-915-48-653-E
Z538-482-61-543-M

Jessica Steffani
Cody Blagg
Jacob Blagg
Just Rushlo
Maria Sheldon
Keenan Ross
Francesca Leonie
Nadia Elyse
Gordon Cade
Hanna Fay

The following SortCL script encrypts the credit card and driver license number fields while
preserving the field formats.

Sort Control Language (SortCL) Program

Input Phase
/INFILE=personal_info # Reads 1 input file

/FIELD=(credit_card,POS=1,SEP=‘\t’)
/FIELD=(driv_lic,POS=2,SEP=‘\t’)
/FIELD=(name,POS=3,SEP=‘\t’)

Action Phase
/REPORT

Output Phase
/OUTFILE=personal_info_encrypted

/FIELD=(credit_card1=FPT_ALPHANUM(credit_card,“pass”,POS=1,SEP=‘\t’)
/FIELD=(driv_lic1=FPE_ALPHANUM(driv_lic,“pass”,POS=2,SEP=‘\t’)
/FIELD=(name,POS=3,SEP=‘\t’)

This produces personal_info_encrypted:

0832-9678-1911-0645
0835-7171-0577-5699
0789-2128-0461-5374
1591-0561-0417-5772
9296-9613-4710-5436
9881-4436-0773-0973
4594-9802-2566-4840
6514-3079-6147-6828
9221-6125-6496-9606
1404-8512-8389-2619

R784-107-86-619-Q
G156-454-45-303-O
Q305-118-71-384-Q
D344-156-20-555-G
U751-860-67-075-Y
X878-716-85-252-C
T273-579-67-063-M
A617-849-83-864-X
S039-406-12-369-U
K379-587-05-591-C

Jessica Steffani
Cody Blagg
Jacob Blagg
Just Rushlo
Maria Sheldon
Keenan Ross
Francesca Leonie
Nadia Elyse
Gordon Cade
Hanna Fay

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 21

Application Sample #4
Data Transformation and Reporting

This example uses stock trading data. It performs a full outer join of two differently formatted
input files to produce three differently formatted targets. The script includes cross-calculation,
aggregation, selection, and markup tags for BI, data interchange, and web posting purposes.

It is important to remember that the samples shown are small in order to illustrate combinable
functionality, not speed in volume. The major benefit of SortCL, in addition to task consolidation,
is its fast processing of big data sources together.

In this example, the input files to be joined are unsorted. The first, nyse-a, is in a tab-delimited
format, and export from a database. The second input file, buys.csv, is in CSV format, typical in
spreadsheet applications.

Input File 1, nyse-a

A. O. Smith Corporation
A.G. Edwards Inc.
A.O. Tatn EFT First
AAG Holding Company1
AAG Holding Company2
Aames Investment Corp.
Aaron Rents, Inc.
ABB LTD.
Abbey National plc
Abbott Laboratories
Abercrombie & Fitch
Abitibi-Consolidated
ABM Industries Inc.
ABN AMRO Holding N.V.

AOS
AGE
TNT
GFZ
GFW
AIC
RNT
ABB
SXA
ABT
ANF
ABY
ABM
ABN

42.40
52.81
103.01
24.71
25.05
4.84
24.05
12.55
25.00
47.25
50.86
2.61
16.44
27.47

142900
251800
136000
1900
4200
145500
1706300
3456100
24700
4210700
1973000
240600
102600
195900

0.04
0.48
1.01
0.06
0.05
0.04
2.53
0.13
0.15
0.15
1.32
0.00
0.363
0.31

0.09
0.91
0.99
0.24
0.20
0.82
9.51
1.04
0.60
0.31
2.53
0.00
2.14
1.14

Input File 2, buys.csv

Shares,Symbol,Client
"1000","DIS","Bill Gates"
"950","EDS","Ben Graham"
"25000","WMT","Warren Buffett"
"3250","AMR","Jeff Bezos"
"775","TSG","Wendi Deng"
"400","HBC","Stephen Covey"
"2100","HIG","Richard Branson"
"950","TEM","Sergey Brin"
"1500","AGE","Michael Bloomberg
"5000","BAC","Donald Trump"
"3333","PRU","Steve Wynn"
"2000","ABN","Jack Welch"
"8500","RNT","George Soros"
"1000","MCK","Kerry Packer"
"4300","UNH","Rupert Murdoch"
"9000","SDS","Jesse Livermore"

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 22

"3500","SNE","Alan Greenspan"
"825","ABT","Lakshmi Mittal"
"9000","ABY","Robert Kiyosaki"
"855","ADS","Lisa Mangino"
"50","IBM","Rick Haines"
"90","SUN","Amrita Thakur"

The goal of the following SortCL job script is to order and match these files by the ticker symbol
in their second columns so that a meaningful set of output reports can be created. Field-level
protections could certainly have been applied if desired.

Job Controls Phase
/WARNINGSON
/MONITOR=4

Input Phase
/INFILE=nyse-a # 1st input, tab-delimited

/FIELD=(Issue,POSITION=1,SEPARATOR='\t')
/FIELD=(Symbol,POSITION=2,SIZE=3,SEPARATOR='\t')
/FIELD=(LastTrade,POSITION=3,SIZE=5.2,SEPARATOR='\t',NUMERIC)
/FIELD=(Volume,POSITION=4,SEPARATOR='\t',NUMERIC)
/FIELD=(Change,POSITION=5,SIZE=4.2,SEPARATOR='\t', NUMERIC)
/FIELD=(Percent,POSITION=6,SIZE=4.2,SEPARATOR='\t', NUMERIC)

/INFILE=buys.csv # 2nd input, CSV format
/ALIAS=buys
/INSKIP=1 # skip header record

/FIELD=(Shares,POSITION=1,SEPARATOR=‘,’,FRAME=‘“’)
/FIELD=(Symbol,POSITION=2,SEPARATOR=‘,’,FRAME=‘“’)
/FIELD=(Client,POSITION=3,SEPARATOR=‘,’,FRAME=‘“’)

Action Phase
/JOIN FULL_OUTER NOT_SORTED nyse-a NOT_SORTED buys \

WHERE nyse-a.Symbol EQ buys.Symbol

Output File 1 - 2D BI Report with Selection
/OUTFILE=TradingA # Summary record format

/HEADREC=" -----------\n"
/FIELD=(New_balance,POSITION=50,SIZE=14.2,currency)
/SUM New_balance from (nyse-a.LastTrade * buys.Shares) # Expression logic

/OUTFILE=TradingA # Detail record format
/HEADREC= “Client Symbol Shares LastTrade Shares*LT Ln.\n\n”
/FIELD=(buys.Client,POSITION=1,SIZE=17)
/FIELD=(buys.Symbol,POSITION=20,SIZE=5)
/FIELD=(nyse-a.Symbol,POSITION=28,SIZE=5)
/FIELD=(buys.Shares,POSITION=35,SIZE=5)
/FIELD=(nyse-a.LastTrade,POSITION=45,SIZE=5.2,NUMERIC),
/FIELD=(product,POSITION=54,NUMERIC, IF nyse-a.Symbol NE buys.Symbol \

THEN “” ELSE nyse-a.LastTrade * buys.Shares)
/FIELD=(Sequencer,POSITION=66,SIZE=4) # Creates sliding index column

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 23

Output File 2 - Data Interchange Format
/OUTFILE=TradingA.xml

/PROCESS=XML
/FIELD=(Client,POSITION=1,SEPARATOR=‘|’,XDEF=“/Trades/Buy@Client”)
/FIELD=(Symbol,POSITION=2,SEPARATOR=‘|’,XDEF=“/Trades/Buy/Symbol”)
/FIELD=(Shares,POSITION=3,SEPARATOR=‘|’,XDEF=“/Trades/Buy/Shares”)
/INCLUDE WHERE nyse-a.LastTrade GT 10 AND buys.Shares GT 0

Output File 3 - Web-ready Summary Report
/OUTFILE=TradingA.htm # Summary record format

/DATA=“</TD>\N<TD align=right><U> \
”

/FIELD=(New_balance,POSITION=3,SIZE=15,SEPARATOR=’’,TYPE=CURRENCY) # Derived
in prior output spec!

/DATA=“</U></TD>\n</TR>\n”
/SUM New_balance from (nyse-a.LastTrade * buys.Shares) WHERE symbol NE “RNT”
/FOOTREC=“</TABLE>
\nCreated on %s. \

<HR></BODY>\n</HTML>”,AMERICAN_DATE

/OUTFILE=TradingA.htm # Detail record format
/HEADREC= “<HTML><HEAD>\n<TITLE>HTML produced by SORTCL \

</TITLE>\n</HEAD>\n<BODY><H2>Trading Summary \
</H2>\n<TABLE CELLPADDING=4 CELLSPACING=1 BORDER COLS=5>\n”

/OMIT WHERE Symbol EQ “RNT” OR Symbol EQ “” # Selection applied in display
/DATA=“<TR>\n<TD><I>”
/FIELD=(buys.Client,POSITION=1,SEPARATOR=’’)
/DATA=“</TD>\n<TD align=right>”
/FIELD=(buys.Symbol,POSITION=2,SEPARATOR=’’)
/DATA=“</TD>\n</TR>\n”

The following command ran the entire job above, producing all targets and job statistics at once:

Sortcl /SPECIFICATION=stockjoin.scl

And as the outputs were created, requested warning and monitor messages were displayed:

+16 stockjoin.scl: warning (101): "PRECISION" ambiguous reference
+18 stockjoin.scl: warning (101): "PRECISION" ambiguous reference
+19 stockjoin.scl: warning (101): "PRECISION" ambiguous reference
+38 stockjoin.scl: warning (101): "PRECISION" ambiguous reference
+47 stockjoin.scl: warning (101): "PRECISION" ambiguous reference

warning TradingA
gap [1 -> 49]

warning TradingA
gap [18 -> 19]
gap [25 -> 27]
gap [33 -> 34]
gap [40 -> 44]

warning TradingA.htm
overlap [1 -> 14]

warning TradingA.xml
missing field before field 175
missing field before field 177

CoSort Version 10.5.1 D10570608-1306 Copyright 1978-2024 IRI, Inc. www.iri.com
EDT 09:25:53 AM Monday, July 17 2023. #22162.TEST 2 CPUs

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 24

Expires Dec 31, 2023 Monitor Level 4
<00:00:00.00> event (57): /spec=stockjoin.scl initiated
<00:00:00.00> event (57): /infile=nyse-a initiated
<00:00:00.03> 2 CPUs
<00:00:00.14> event (59): P5a5b88 infile opened
<00:00:00.14> event (59): P5a5c08 infile opened
<00:00:00.00> event (57): /infile=buys.csv initiated
<00:00:00.06> event (66): cosort() process begins
<00:00:00.14> event (59): d:\CS_JOIN_7d8.6fc infile opened
<00:00:00.14> event (66): cosort() process begins
<00:00:00.22> event (67): cosort() process ends
<00:00:00.22> event (58): /infile=buys.csv completed
<00:00:00.33> event (61): TradingA outfile opened
<00:00:00.33> event (61): TradingA.xml outfile opened
<00:00:00.33> event (61): TradingA.htm outfile opened
<00:00:00.30> event (67): cosort() process ends
<00:00:00.30> event (58): /infile=nyse-a completed
<00:00:00.34> event (60): P5a5b88 infile closed0
<00:00:00.34> event (60): P5a5c08 infile closed0
<00:00:00.34> event (68): left 0 right 0
<00:00:00.34> event (62): TradingA outfile closed
<00:00:00.34> event (62): TradingA outfile closed
<00:00:00.34> event (62): TradingA.xml outfile closed
<00:00:00.34> event (62): TradingA.htm outfile closed
<00:00:00.34> event (62): TradingA.htm outfile closed
<00:00:00.39> event (58): /spec=stockjoin.scl completed

EDT 09:25:53 CoSort Serial # 22162.TEST 2 CPUs Expires Dec 31, 2024

In TradingA, both matches and non-matches are shown in order by ticker symbol. The cross
and down-row calculations support business intelligence and billing operations.

Output File 1, TradingA

Client

Lakshmi Mittal
Robert Kioysaki
Lisa Mangino
Michael Bloomberg

Jeff Bezos

Donald Trump
Bill Gates
Ben Graham

Stephen Covey
Richard Branson
Rick Haines
Kerry Packer
Steve Wynn
George Soros
Jesse Livermore

Symbol

ABT
ABY
ADS
AGE

AMR

BAC
DIS
EDS

HBC
HIG
IBM
MCK
PRU
RNT
SDS

ABB
ABM
ABN
ABT
ABY

AGE
AIC

ANF
AOS

GFW
GFZ

RNT

Shares

825
9000
855
1500

3250

5000
1000
950

400
2100
50
1000
3333
8500
9000

LastTrade

12.55
16.44
27.47
47.25
2.61

52.81
4.84

50.86
42.40

25.05
24.71

24.05

Shares*LT

38981.25
23490.00

79215.00

204425.00

Ln.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 25

Alan Greenspan
Amrita Thakur

Sergey Brin

Wendi Deng
Rupert Murdoch
Warren Buffett

SNE
SUN

TEM

TSG
UNH
WMT

SXA

TNT

3500
90

950

775
4300
25000

25.00

103.0

$346,111.25

24
25
26
27
28
29
30
31

The next target, in valid XML format, contains only the selected fields and condition results:

Output File 2, TradingA.xml Output File 3, TradingA.htm

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 26

IRI Workbench
CoSort ships with a free Graphical User Interface (GUI) for Sort Control Language (SortCL) job
design and management. IRI Workbench is a plug-in to the familiar Eclipse™ Integrated
Development Environment (IDE) to help users create, maintain, run, and share SortCL -- and
other IRI and non-IRI -- jobs. It provides rich, ergonomic functionality and future extensibility.

Job Wizards, Dialogs, Diagrams and Enhanced Script Editing

IRI Workbench can use multiple presentation facilities in Eclipse to improve the SortCL job
design experience. The wizards take you from source and metadata specification through the
action phase of a job, and finally to the specification of one or more targets and formats. Wizard
and form dialog results help populate and modify SortCL job scripts. Workflow and
transformation mapping diagrams can also be built from scripts (or vice versa).

For those who prefer direct coding in the 4GL, a syntax-aware editor facilitates valid script
creation and modification. Changes to DDF or .SCL code made in the editor or the other
interfaces dynamically update each other; i.e, everything is model-driven and re-entrant.

The top window in the figure below shows the editor and outline view of a join job script. You
can invoke the join wizard (shown in the bottom left) from the main menu and within the script
editor view.

The join wizard allows you to specify all details of a multi-table join action. The bottom right
window shows the target field layout of this job. Note that multiple input sources (shown in upper
tabs) and output targets (shown in lower tabs) are displayed to help you specify file and table
target layouts quickly and easily.

Figure 3 IRI Workbench Overview

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 27

https://www.iri.com/products/workbench
https://www.iri.com/blog/iri/iri-workbench/iri-workbench-eclipse-marketplace/

ODBC-Connected (DB Table) Data Sources and Targets
In addition to their flat file inputs, CoSort users can integrate, stage, transform, protect, and
report against data stored in Oracle, DB2, SQL Server, SAP, MySQL, Sybase, Excel, and other
ODBC-connected sources. Workbench uses the JDBC-ODBC bridge in the Eclipse Data Tools
Platform (DTP) for viewing and selecting table data.

In the graphic below, the left panel shows the DTP view of a database. The middle panel
displays the contents of the selected table, and the right panel is the Data Definition File (DDF)
form editor that is used to modify the table metadata specifications for a SortCL job.

Figure 4 DTP and DDF Editor

Metadata Discovery
Those familiar with CoSort know that you must define the structure of all input and output files in
SortCL DDF syntax. This has traditionally been a manual field-by-field editing process, or the
result of a command line conversion program like cob2ddf (for COBOL copybooks). When
pre-existing metadata is not available, IRI Workbench helps users to visually define their field
layouts and populate file and table metadata for use in SortCL jobs.

The following screenshot shows how users can define fixed-position fields by moving sliders to
the start and end of each field in a source data preview window. Once you add a field, the
bottom spreadsheet view reflects the DDF specifications which you can then modify.

For records with delimited fields, a column-based editor is provided instead, as sliders are
unnecessary. A HEX view option facilitates the definition of binary data.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 28

Figure 5 Define Metadata Wizard

Metadata Conversion

The process of bulk metadata and third-party sort script migration to CoSort SortCL syntax has
been modernized and automated in the Workbench. Wizards exist to translate third-party data
layouts into SortCL DDFs and job scripts.

An example of the former would be bulk COBOL copybook conversions to SortCL .ddf targets.
There is a wizard to convert one or more metadata repositories or file headers into DDF. There
is also a wizard to convert and import third-party sort parms into SortCL job scripts.

The conversion wizard shown below demonstrates the conversion of one or more JCL sort
decks to SortCL job scripts. You can browse to the location of the parms, and then automatically
convert them for use in SortCL.

The middle window in the screenshot below shows advanced options available for these
conversions. The bottom window shows from left to right: project explorer files (including the
source and target job scripts), an editor displaying the source job script, a display of the target
job script, and a tree view of the components of the target job script.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 29

Figure 6 Import Wizard and Imported Script

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 30

SortCL Command Set
The following is a list of the core commands available in SortCL as of CoSort v10:

/ALIAS
/APPEND
/ALTSEQ
/AVERAGE
/CHARSET
/CHECK
/CONDITION
/COUNT
/CREATE
/DATA
/DEBUG
/DELETE
/DUPLICATESONLY
/ENDIAN
/EXECUTE
/FIELD
/FIELD_PREDICATE
/FILE
/FOOTREC
/HEADREAD
/HEADREC
/HEADSKIP
/HEADWRITE

/INCLUDE
/INCOLLECT
/INFILE
/INFILES
/INPROCEDURE
/INREC
/INSERT
/INSKIP
/JOBCOLLECT
/JOBSKIP
/JOIN
/KEY
/KEYPROCEDURE
/LENGTH
/LIBRARY
/LOCALE
/MAXIMUM
/MINIMUM
/MERGE
/MONITOR
/NODUPLICATES
/OMIT
/OUTCOLLECT

/OUTFILE
/OUTPROCEDURE
/OUTSKIP
/PROCESS
/QUERY
/RANDOM
/RC
/RECSPERPAGE
/REPORT
/ROUNDING
/SORT
/SPECIFICATION
/STABLE
/STATISTICS
/STREAM
/SUM
/TAILREAD
/TAILSKIP
/TAILWRITE
/TEMPLATE
/UPDATE
/WARNINGSOFF
/WARNINGSON

Note that each command may contain additional parameters that expand its functionality. For
example, the /JOIN ONLY command will eliminate the inner join results of a full outer join. Note
also that many external functions can be invoked beyond the command set. For example,
encryption and other masking functions, as well as set file lookups, are specified as functions
within /FIELD statements.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 31

Metadata Conversion Tools
CoSort includes several tools to translate existing flat file layout (and sort job) metadata for use
in Sort Control Language (SortCL) programs. IRI has also partnered with leading metadata
generation and conversion vendors like DataSwitch, erwin, and Meta Integration Technology to
auto-create SortCL-compatible data definitions from third-party BI, ETL and RDB metadata.

About SortCL Metadata
The explicit text-based metadata of SortCL is straightforward and self-documenting -- making it
easy to learn, use, and audit. You can store your files' field (column) layouts in reusable Data
Definition File (.ddf) repositories. You can paste or reference these definitions in your SortCL job
script. SortCL uses /FIELD= statements to identify column:

● Names or aliases
● Sizes or ranges
● Positions or delimiters
● Data types
● Conditions and expressions
● Security and other functions

Third-Party Metadata
File layout translators included in the CoSort package can migrate your existing field/column
descriptions into SortCL (and RowGen) .ddf repositories. These tools can reduce or eliminate
the overhead associated with converting existing metadata into .ddf from:

● COBOL copybooks (cob2ddf)
● Comma-separated values (csv2ddf)
● Excel (XLS and XLSX spreadsheets, xls2ddf)
● LDIF (ldif2ddf)
● MongoDB collections (Workbench)
● XML (xml2ddf)
● W3C extended log format (elf2ddf)
● Oracle SQL*Loader control files (ctl2ddf)
● ODBC table data

Therefore, if you already have file layouts defined in the above applications, you can
automatically reproduce that metadata for use in any SortCL manipulations. If your file layouts
exist in other formats (including CWM, DSX, UML, XMI and XML), the Meta Integration Model
Bridge (MIMB) will convert these repositories into SortCL .ddf syntax. This precludes the need
for manually re-defining flat file field layouts for reference in SortCL applications.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 32

https://www.iri.com/products/cosort/sortcl
https://www.iri.com/blog/data-transformation2/xls2ddf-metadata-conversion-utility/

Sort Program Conversions
The included mvs2scl, and vse2scl utilities convert legacy MVS JCL, and VSE JCL,
respectively, to functionally-equivalent SortCL job specifications. Conversion tools cannot
translate every script. However, field re-casting usually works, and manual translation of source
scripts to SortCL equivalents is usually not difficult. For more information on, and examples of,
these tools, see IRI’s Legacy Sort Migration white paper.

Another available utility, called sorti2scl, translates legacy CoSort Sort Interactive (SortI)
program specifications (.spc) into their SortCL script (.scl) equivalents. SortI is not provided in
CoSort V10 and above.

Unix Sort Replacement (bin/sort)
The /bin/sort utility provided with the Unix operating system is designed for ordering small
collections of alphanumeric data. It does not work well when the size of the data increases
beyond available memory. For those with an investment in, or familiarity with, existing system
sort commands, IRI provides a drop-in /bin/sort replacement that improves high-volume sort
performance through the CoSort engine.

Unix users are provided with a new /bin/sort, and Windows users get a unixsort.exe program.
Upon installation, the object file can be moved into a system directory to provide sort services
with the same syntax as the original sort verb, but at much higher performance levels.

An example of the Unix sort replacement in CoSort follows, using the following data sample:

Input File 1, chicago

5180
3391
8835
2272
1139
3928
4877

On Top 15.95 Harper-Row
Married Yount 24.95 Prentice-Hall
Beginnings 8.50 Prentice-Hall
Still There 13.05 Dell
Greater Than 34.75 Valley Kill
Not On Call 9.99 Harper-Row
Going Nowhere 17.95 Valley Kill

We first define the way to specify fields for the sort key. White space denotes the end of a field
unless a field separator character is defined.

To sort chicago starting with the second field, use the command:

/path2/cosort95/bin/sort -k 2 chicago -o out1

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 33

Output File, out1

8853
4877
1139
3391
3928
5180
2272

Beginnings 8.50 Prentice-Hall
Going Nowhere 17.95 Valley Kill
Greater Than 34.75 Valley Kill
Married Young 24.95 Prentice-Hall
Not On Call 9.99 Harper-Row
On Top 15.95 Harper-Row
Still There 13.05 Dell

To sort starting at the second character of the first field, use the following command:

Sort -k 1.2 chicago -o out2

Output File, out2

1139
5180
2272
3391
8835
4877
3928

Greater Than 34.75 Valley Kill
On Top 15.95 Harper-Row
Still There 13.05 Dell
Married Young 24.95 Prentice-Hall
Beginnings 8.50 Prentice-Hall
Going Nowhere 17.95 Valley Kill
Not On Call 9.99 Harper-Row

The CoSort /bin/sort replacement also supports legacy Unix sort options. For example:

Sort -t, +3 +2nr -3 chicago -o out3

Output File, out3

2272
5180
3928
3391
8835
1139
4877

Still There 13.05 Dell
On Top 15.95 Harper-Row
Not On Call 9.99 Harper-Row
Married Young 24.95 Prentice-Hall
Beginnings 8.50 Prentice-Hall
Greater Than 34.75 Valley Kill
Going Nowhere 17.95 Valley Kill

The CoSort Unix sort replacement supports these command-line flags:

[-c] [-d] [-m] [-f] [-u] [-i] [-o] [-M] [-T] [-b] [-n] [-t] [-r] [-z]

[-y] and [-Kmem] flags are supported indirectly via values defined in your cosortrc file. For
more information, see the SYSTEM TUNING chapter.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 34

COBOL Migration Tools
CoSort ships with the tools, libraries, and documented examples you need to achieve a wide
range of COBOL data migration and processing goals on open systems:

Sorting and Migrating COBOL Data
All CoSort interfaces support MF and RM COBOL data type collation while SortCL also handles
conversion. CoSort includes a COBOL copybook metadata translation tool to leverage your file
layouts in SortCL applications, and JCL sort parm conversion tools to leverage your MVS and
VSE cards. CoSort can also sort EBCDIC data and can sort ASCII data in EBCDIC order.
Multiple conversions can be done while simultaneously sorting.

Accelerating Native Sort Calls
CoSort is faster than most compiler-included sort functions, and CoSort packages include
several tools and methods to improve COBOL sort performance:

● Sort replacement for ACUCOBOL-GT
● Sort replacement for Micro Focus COBOL
● Serial and concurrent system calls to SortCL
● Static and dynamic API calls to CoSort libraries

Sorting and Converting Index, Variable & Blocked Files
The CoSort SortCL program can perform multiple manipulations and conversions on
ACUCOBOL-GT Vision files, Micro Focus variable length records, and index files in MF-ISAM
and VISION formats. In the SortCL (4GL) job script, you define your input and output file formats
and record layouts, along with your data filtering and transformation (sort, join, aggregate, etc.).
You can integrate these formats with files in other formats all at the same time, and write output
files in the same or different file format.

Generating Reports
The CoSort SortCL program includes a wide range of reporting features you can exploit to
customize detail and summary targets for presentation and hand-offs to other tools.

Protecting Sensitive Data
Either as a separate process, or in combination with the above SortCL activities, you can also
engage field-level protection functions like encryption and de-identification.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 35

Creating Safe COBOL Test Data
Both CoSort and the fit-for-purpose IRI RowGen test data product uses SortCL syntax to define
the layout of COBOL files that can contain randomly-generated and/or randomly-selected test
data.

Auditing Data and Applications
For data governance and other tracking purposes, SortCL offers several logging options,
including a query-ready XML file with entire scripts (containing field names and masking
function specifications).

Application Programming Interfaces (APIs)
In addition to the many standalone utilities and third-party sort replacements in each CoSort
package, there are two high-performance, thread-safe sorting libraries you can call into your
software. Each API satisfies a different class of requirements.

You can link these C routines statically or dynamically, and the same calling code runs across all
Unix, Linux and Windows platforms. Both libraries leverage the same multi-threaded CoSort
sorting routine against any volume of input. Inputs and outputs can be in the form of files, pipes,
records and record buffers (blocks) streaming to and from multiple calls simultaneously from
your applications.

Integrating Sort/Merge Operations Only
The traditional CoSort API is now thread-safe, and is documented as cosort_r(). You can call
cosort_r() to speed operations that sort or merge high volumes of data. Because your programs
configure the input, compare, and output processes into the CoSort engine, you also can apply
your own selection and comparison criteria.

The 'r' in cosort_r() refers to the re-entrant nature of the call; you can call the function recursively
from multiple processes. This means you can specify multiple sort orderings on the same input,
and in the same pass. Flexible architecture also allows you to manage several sort jobs from
within a single process, and from within as many processes as you like.

Integrating Multiple Transformation Functions
The multi-purpose SortCL program is also available for thread-safe application calls and can
enable the simpler execution of scripts. Embed sortcl_routine() library to speed and combine
functions, including:

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 36

● Sort/Merge
● Match/Join
● Aggregate/Calculate
● Filter/Scrub
● Type-Conversions
● Encrypt/De-ID
● Reporting
● Random Data Generation

This API gives you access to all the data transformation, business intelligence, protection, and
prototyping functions available in SortCL data definition and manipulation syntax. Integrating
sortcl_routine() into an ETL environment allows you to source and target database tables, as
well as files, pipes, and custom input/output procedures.

The following C program demonstrates the simplicity of calling SortCL scripts via the
sortcl_routine(api):

/* *
* Copyright 1978 - 2023 CoSort / Innovative Routines International (IRI), Inc.
* All Rights Reserved.
*
* SortCL API example to run a script file
* ScriptFile: keyproc.scl
* Input File: chiefs
* Output File: chiefs.out
* */
/* cosort header file */

#if defined (_WIN32)
#define __DDL_IMPORT__ /* IMPORTANT: needed to work with Windows DDL */
#pragma pack(1) /* or compile with /Zpl option */
#endif /* (_WIN32) */
#include “cosort.h
#include “sortcl_routine.h”

int main()
{
int iRetVal; /* return value */
cs_sortcl_t* sortcl; /* main sortcl context variable */
/* allocate the main sortcl context variable */
sortcl = sortcl_alloc();
if (sortcl) {
/* call sortcl_routine api */
iRetVal = sortcl_routine(sortcl, “/spec=keyproc.scl”);
/* free the sortcl variable */
sortcl_free(sortcl);
}
/* if return value != 0 it is an error */
return (iRetVal);
}

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 37

You can make calls to the sortcl_routine library from any language that links to C. For more
information about the content of SortCL job specification (.scl) files, see the functional
description and scripting examples in the SORTCL PROGRAM chapter.

COBOL programmers may also wish to consider the ability to call SortCL scripts as system
calls; for example:

CALL “system” USING “sortcl /SPECIFICATION=keyproc.scl &”

where keyproc.scl starts in the background while other COBOL program functions run.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 38

System Tuning
High-volume sorting and related data manipulations can be very resource-intensive. CoSort can
achieve scalability that is nearly linear through its proprietary processing techniques and the
proper application of manual and automatic system tuning. At the same time, however, CoSort
is designed to be a good neighbor in a multi-user computing mix.

System administrators can combine kernel and CoSort tuning to optimize the performance of
large data transformations without unduly impacting concurrent jobs. To prioritize CoSort
operations at the system (global), user, or job level, adjust the values associated with the
parameters shown below in your resource control file(s) (on Unix) or Windows registry:

Threads
On multi-core platforms, CoSort users can manually set the number of threads that sorts and
related transformations will spawn and use. In most cases, the closer this value is set to the
actual number of CPU cores and disk drives on the system, the better the performance.

Memory Allocation
By assigning, or limiting the amount of random access memory available for sorting, system
administrators can maximize the efficiency of jobs according to their desired system priority. Like
other CoSort resource controls, automatic and manual memory tuning variables allow users to
determine how much impact CoSort will have on concurrently running applications.

Block Size
Blocks of memory are used as buffers to hold data temporarily. The data move through input,
sort and output phases of the CoSort utilities (or a customized front-end), and between an
application (calling) program and the cosort() engine. The size of these blocks determines how
often disk I/O will be performed, and is a function of how much memory is available.

Workfile Compression and Storage
Overflow occurs in sorting when there are more input records than can be held in memory.
When all the overflow data are distributed to temporary files, these files and the internal data are
merged to produce output. Users can control the compression ratio and location of these
temporary files and distribute them across multiple file systems. Where multiple drives and
threads are specified, speed can increase in the later stages of the sort as the data is read back
(into the output file/s) in parallel. You can also use input selection to reduce processing volume
and temporary space requirements at runtime.

CoSort resource controls also include these application-specific values:

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 39

Record Terminator
Where variable length output is specified, any record terminating character can be specified. By
default the same terminator present on input is used on output. You can also select a Windows
(CRLF), Unix (LF), or your own special terminator, including a NULL character ("").

Century Window
Users with non-Y2K-compliant (2-digit date) data can specify the minimum year for CoSort to
sort after 1999. This “sliding” feature allows custom collation for any century-bordering dates.

Pause / Resume
During large sort operations that require the creation of temporary work files, CoSort can warn
users when temporary disk space is exhausted, and allow for ad hoc re-allocation so that the
job can continue without having to be re-started.

Runtime Monitoring
By specifying various levels of verbosity, CoSort users can view on-screen job progress reports
with timestamps and event messaging. Events include the opening and closing of input, work,
and output files and the number of records accepted, rejected or processed. Displays range
from off (level 0) to showing every single record (number) being processed (level 9).

Execution Log
Basic runtime information can be directed to one or more files to archive CoSort jobs and their
performance. This log file is a self-appending text file. A self-replacing text file called .cserrlog is
created during each run to record tuning and version information, and any error messages, in
the event of an abnormal termination (for debugging purposes).

Audit Log
Detailed runtime information can be optionally directed to a self-appending, query-ready XML
log file that contains environmental and performance details, and the entire SortCL job script, to
record every aspect of the application (data definitions, manipulations and protections) in order
to verify compliance with procedures and data privacy regulations.

A complete description of all parameters, and how to tune them, can be found in Appendix D of
the CoSort User Manual.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 40

Technical Specifications
CoSort is a general-purpose data manipulation package for big data transformation, reporting,
protection and conversion. Its utilities and API functions exploit the same coroutine engine to
sort and otherwise manipulate all data sources and record types specified below. CoSort
performs in-memory, record-level processing and leverages multiple threads, task consolidation,
automatic tuning, and file system (not database) resources to optimize application without
slowing down concurrent jobs.

Installation
● Distributed via internet or user-specified media
● Loads in under two minutes
● Menu-driven setup and configuration utility

Invocation
● Command line (including pipe sequences), shell commands and batch scripts
● IRI Workbench - Eclipse™ IDE for Windows, Linux, and MacOS (Sierra)
● Application calling programs as a standalone executable, subroutine or coroutine call,

with or without additional exit routines
● IRI Workbench task scheduler or third-party schedulers (e.g., cron, Autosys,

Stonebranch UC)

Ease of Use
● Processes data using record layouts and SQL-like field descriptions within applications

or centralized data definition files (DDF)
● Converts and processes native COBOL copybook, Oracle SQL*Loader control file, CSV,

and W3C extended log format (ELF) file layouts
● SortCL DDF is a supported AnalytiX DS and MITI MIMB metadata format
● Provides online help, pre-runtime application validation, and runtime errors
● Leverages centralized application and file layout definitions (metadata repositories)
● Reports problems to standard error when invoked from a program, or to an error log
● Runs silently or with verbose messaging without user intervention
● Allows user control over the amount of informational output produced
● Generates a query-ready XML audit log for data forensics and privacy compliance
● Describes commands and options through man pages and online documentation
● Fully supports job design, execution, modification, and tuning in familiar Eclipse™ GUI
● Easy-to-use interfaces and seamless third-party sort replacements preclude the need for

training classes; however, advanced training is available in Florida or at user sites
● Phone, web, and email support available directly from the product developers
● Local language support is available from more than 40 international offices

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 41

Resource Control (See System Tuning above)
● Sets and allows user modification of the maximum and minimum number of concurrent

threads for sorting on multi-CPU and multi-core systems
● Uses a specified directory or combination of directories for temporary files
● Supports automatic and manual compression (and ratios) for temporary files
● Automatically sets ceilings and floors for main and virtual memory used during sort

operations
● Sets the size of the memory blocks used as physical I/O buffers

Input and Output
● Processes any number of supported data sources of any size, and any number of

records, fixed or variable length (to 65,535 bytes)
● Sources can be: flat files (including CSV, LDIF, COBOL and XML), semi-structured

JSON files, ODBC-connected tables or Excel spreadsheets, ASN.1 CDRs, an input
procedure, stdin or a named pipe, a brokered Kafka or MQTT topic, HTTP/S streams,
and supported file formats in Amazon S3 buckets, Azure Blob & GCP storage, or HDFS

● Supports the use of environmental variables and wildc/ards in the specification of input
and output files, as well as absolute path names and aliases

● Accepts and outputs fixed- or variable-length records with delimited fields
● Generates one or more detail or summary targets, plus ODA output for BIRT
● Returns sorted, merged, or joined records one (or more) at a time to an output

procedure, to stdout, a named pipe, a table in memory, one or more new or existing
structured (or JSON) files, a Kafka or MQTT broker, S/FTP, or to an application program

● Outputs optionally with GUID, UUID, or sequence numbers for each record, at any
starting value, for indexed loads and/or reports

● Supports inline .gzip (compressed file) read/write operations
● Synthesizes randomly generated or randomly selected test data values

Record Selection and Grouping
● Includes or omits input or output records using field-to-field or field-to-constant

comparisons
● Compares on any number of data fields, using standard and alternate collating

sequences
● Sorts and/or reformats groups of selected records
● Matches two or more sorted or unsorted files on inner and outer join criteria using

SQL-based condition syntax
● Skips a specified number of records, bytes, or a record header
● Processes a specified number of records or bytes, including a saved header
● Eliminates or saves records with duplicate keys

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 42

http://www.iri.com/products/workbench/data-sources
https://www.iri.com/blog/etl/processing-spreadsheet-data/
https://www.iri.com/blog/etl/asn1-integration-sortcl/
https://www.iri.com/blog/etl/processing-spreadsheet-data/

Sort Key Processing
● Allows any number of key fields to be specified in ascending or descending order
● Supports any number of fields from 1 to 65,535 bytes in length
● Orders fields in fixed position or floating (on one or more delimiters)
● Supports numeric keys, including all C, FORTRAN, and COBOL data types
● Supports single and multi-byte character keys, including ASCII, EBCDIC, ASCII in

EBCDIC sequence, Thai characters, and natural (locale-dependent) values
● Supports American, European, ISO and Japanese timestamps
● Supports Unicode and double-byte characters like Big5, EUC-TW, UTF16, and SJIS
● Allows left or right alignment and case shifting of character keys
● Accepts user compare procedures for multi-byte, encrypted and other special data
● Performs record sequence checking
● Maintains input record order (stability) on duplicate keys
● Controls treatment of null fields when specifying floating (character separated) keys
● Collates (and converts between many of) the following data type format groups

Form Group Form Type

0 Alphabetic

1 Numeric

2 Date

3 Time

4 Timestamp

5 Reserved

6 Unicode

● Collates, converts, masks, formats, cleanses and otherwise operates on all the data
types below. In many cases, the types can also be randomly generated for use as test
data.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 43

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 44

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 45

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 46

Record Reformatting
● Inserts, removes, resizes, and reorders fields within records
● Defines new fields through the use of various field-level functions
● Converts data in fields from one format to another using internal conversion
● Maps common fields from differently formatted input files to a uniform sort record
● Join any fields from several files into an output record, usually based on a condition
● Changes record layouts within, and converts between, different file formats, including:

Delimited, Fixed, Line Sequential, Record Sequential, Variable Sequential, Blocked,
Microsoft Comma Separated Values (CSV), ACUCOBOL Vision, MF I-SAM, MFVL,
Unisys VBF, VSAM (via UniKix MBM), Extended Log Format, JSON, LDIF, and XML

● Maps processed records to many differently formatted output file, table and report
targets

● Transposes (pivots) rows to columns and columns to rows
● Writes multiple record formats to the same file for complex report requirements
● Performs mathematical operations and functions on field data (including aggregate data)

to generate new output field values

Field Reformatting & Validation
● Retrieves and re-maps values from multi-dimensional, tab-delimited lookup files on the

basis of equal or conditional matches (suitable for Slowly Changing Dimensions)
● Creates and processes sub-strings of original field contents, where you can specify a

positive or negative offset (from the left or right, respectively, of the source field) and a
number of bytes to be contained in the sub-string

● Finds a user-specified text string in a given field, replaces all occurrences of it with a
different user-specified string on output, and displays a set number of repeating strings

● Recognizes byte order marks and supports field-level big and little endian conversions
● Analyzes fields to display the offset number for the specified occurrence of a string
● Manipulates and displays literal values with input data inside field statements for use in

value derivations, functions, conditions, cross calculations, and reporting
● Aligns desired field contents to either the left or right of the target inrec or output field,

where any leading or trailing fill characters from the source are moved to the opposite
side of the string

● Supports Perl Compatible Regular Expressions (PCRE), and pattern matching for
find/replace operations

● Uses C-style “iscompare” functions to validate contents at the field level (for example, to
determine if all field characters are printable or whether a value “ismissing”), which can
also be used for record-filtering via /INCLUDE and /OMIT statements

● Supports custom-defined data masks and field layout templates to structure composite
elements in new (e.g., master data format) field formats for mapping and validating data

● Supports Boost date and time libraries for data format masking and interval calculations
● Supports custom, user-written field-level transformation libraries, and documents an

examples of data cleansing routines from Melissa Data and Trillium

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 47

Field Masking
● Encrypts with user-specified functions or these built-in libraries: 3DES, AES-128 and

256 bit (including format preserving), GPG, and FIPS-compliant OpenSSL
● De- and re-identifies with built-in ASCII bit scrambling, binary encoding, or substitute

tokens
● Hashes with 128 and 256-bit functions
● Redacts with character masking or trimming, or conditional removal of columns, values

or rows
● Pseudonymizes with scrambled substitutes of original values or randomly selected set

lookups
● Randomly generates new field values for a given data type or randomly selects set file

values
● Adds random noise (blur) to date and age values
● Anonymizes or generalizes quasi-identifying values by bucketing them into larger

categories
● Manipulates field values with string functions or logical expressions
● Supports development and invocation of custom (user-created) field masking functions

Record Aggregation
● Consolidates records with equal keys into unique records, while totaling, averaging, or

counting values in specified fields, including derived (cross-calculated) fields
● Produces maximum, minimum, average, standard deviation, sum, and count fields
● Displays running summary value(s) up to a break (accumulating aggregates)
● Breaks on compound conditions
● Allows multiple levels of summary fields in the same report
● Re-maps summary fields into a new format, allowing relational tables
● Ranks data through a running count of descending numeric values
● Writes detail and summary records to the same output file for structured reports
● Supports multiplication and ranking
● Calculates aggregate values within sliding range windows
● Uses fuzzy lookup logic for trend reporting and predictive analytics
● Supports Boost quick_stats functions for linear regression (trend line) analysis

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 48

Licensing Information
IRI and its expert agents around the world license CoSort for perpetual use on individual
computer systems. Maintenance (technical support and site-specific software updates) services
are provided free of charge during the first year after installation. Subsequent annual
maintenance is usually offered at or below 20% of the base license fee, and 24/7 technical
support is available as a premium option.

CoSort license fees for Unix systems are based on specific machine make and model numbers.
CoSort license fees for x86 Linux and Windows are based on RAM. In either case, additional
charges for multiple CPUs and cores are assessed to reflect the performance gains from
multi-threaded operations.

License fee discounts apply for multiple copies of CoSort at the same installation, and for
runtime integration and redistribution (for ISVs only). IRI is generous with credit for hardware
upgrades and migrations, and provides for no- or low-cost failover (disaster recovery) licenses.

CoSort is also included in, and available on a subscription basis with, the IRI Voracity data
management platform.

U.S. educational and 501c(3) nonprofit institutions qualify for a 10% license fee discount and
government agencies will find CoSort on the GSA schedule.

A confidential license fee quotation and a free 30-day trial are available from your IRI agent,
pursuant to a non-disclosure agreement.

A free, 30-day trial period is offered prior to licensing. A non-disclosure agreement must be
completed online or sent signed to an IRI representative.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 49

http://www.iri.com/products/voracity
http://www.iri.com/products/go/free-trial
http://www.iri.com/partners/resellers

Professional Services
An IRI Professional services engagement allows you to leverage more than 100 collective years
of IT and integrate data handling experience. Examples of IRI professional services
engagements involve:

● Big data preparation - packaging, protection, and provisioning structured and
unstructured data sets for BI within existing DBs and files systems (and without the skills
gap, high cost, and failure rate associated with Hadoop or ELT appliances)

● Data masking - profiling, de-identification, re-ID risk scoring, and other services to aid
data loss prevention, data governance, and data privacy law compliance efforts

● Data replication and federation - acquiring, re-mapping, and creating virtualized views

● Database migration - mapping table data and relationships to new versions on platforms

● Legacy data conversion - reformatting LDIF, XML, and COBOL index files (e.g., Vision,
MF-ISAM), multi-byte character sets, most mainframe data types, and endian conditions

● Master data management - value and format definition, quality validation, and security

● Program replacement - translating cryptic and inefficient SQL, 3GL, ETL, and shell
procedures into IRI’s simple, portable, open-text 4GL scripts

● Test data management - end-to-end services from needs definition through data
generation and target persistence (without using production data)

Company Background
Innovative Routines International (IRI), Inc. is an independent software vendor (ISV) specializing
in data management and protection. Better known as "The CoSort Company," IRI was founded
in 1978 as a pioneer and market leader in the “open systems” sort industry.

As data volumes have grown, so has IRI. More than 40 years later, IRI and its clientele continue
to partner in the creation, improvement, and expansion of an integrated product line focused on:

Data Management - Data Movement, Data Integration, Migration, and BI / Wrangling
and
Data Protection - PII/PHI Data Discovery and Masking, Risk Scoring, and Safe Test Data

IRI continues to satisfy its users worldwide through an ongoing dedication to speed, ease,
versatility, and value in the product line, and to agility, innovation, responsiveness, and quality in
its services.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 50

INNOVATIVE ROUTINES INTERNATIONAL (IRI), INC.

Suite 303, Atlantis Center
2194 Highway A1A

Melbourne, FL 323937-4932 USA
Phone | +1.321.777.8889

www.iri.com/cosort

Trademarks: CoSort, Voracity, FieldShield, RowGen, and NextForm are registered trademarks of Innovative
Routines International (IRI), Inc. SortCL and IRI Workbench are trademarks of IRI, Inc.

All other brand or product names are, or may be, (registered) trademarks of their respective holders/companies.

© 2024 IRI, Inc. All Rights Reserved. CoSort v10.5 Overview | 51

https://www.iri.com/cosort

