Speeding Oracle Utility Operations

CoSort / IRI, Inc.
MIS White Paper Series, Vol. 5

Abstract:

According to a 2006 Gartner report, Oracle remains the world’s most widely used database. At
the same time, data growth continues unabated. As a result, database administrators (DBAs)
and data warehouse architects face ever increasing volume, and shrinking processing windows.
Strict service level agreement (SLA) commitments and business intelligence cycles demand that
database operations such as reorganizations, and data warehouse extract, transform, and load
(ETL) operations run as fast and efficiently as possible. The basic methods presented here show
how to address these issues without impacting on-line operations or major budgets.

- A ﬂmfor
n.'A & ' .0racle
| RS Q| . 2
ML MmN/ m

CoSort FAst extraCT

FACT/Oracle Unload/ETL White Paper 1 Copyright 2007 IR, Inc. All Rights Reserved

Introduction

Oracle databases allow IT departments around the world to build robust and valuable data
warehouses. With the decreasing cost of storage, companies are now, more than ever, able to
store an increasing amount of data, and need to transform that data into actionable business
intelligence. Successful data warehousing systems are those able to process increasingly larger
volumes of data within the same, and sometimes smaller, production time frames.

The amount of digital data that companies have generated in the last five years is three times
the amount generated in the last 35. A regional telecommunications provider can generate 200
million "call detail" records everyday. In the United States alone, more than 100 billion credit
card transactions are made annually at an annual growth rate of 15%. Even larger sources of
data lie in the on-line transactions of internet commerce. Turning this data into information
quickly requires efficient Extract, Transform, and Load (ETL) operations.

Making Oracle-related ETL (and database reorg) processing more efficient can start with the
simple premise of optimizing the performance of each step, and the movement of data between
the steps. This document explains the importance of speed in each case, and recommends off-
line (external) processing to improve speed. File-based staging unburdens the database, ETL
and BI tools in which high volume transforms need not, and should not, occur. At the end of the
document is a step-by-step example of IRI's methodology for faster extraction of data into this
file system, combined with large transforms, advanced reporting, and pre-sorted bulk loads.

The Extraction Bottleneck

Most data warehousing projects are centered around solving the same fundamental business
problem - taking data from disparate sources across the enterprise, aggregating and merging
them into a single schema capable of supporting web access, reporting and business
intelligence tools. This process must be automated, controlled, reliable — and fast.

Today's Oracle DBAs and data warehouse architects face increasing table volumes and
processing bottlenecks. Service-level agreement (SLA) commitments and shrinking production
windows require fast database reorg and data warehouse extract, transform, and load (ETL)
solutions that deliver both high performance and database availability.

Obtaining timed and filtered extracts from relational databases can be prohibitively slow. The
larger the source, and the more business logic applied to the extraction, the slower extracts
become. You may have only a very limited operational *downtime’ during which you can run an
extraction, and for synchronization reasons, all extracts may need to run simultaneously.
Extraction speed is therefore a key issue in many data warehousing projects. With the growing
popularity of ETL tools, the temptation is to simply plug one of these tools into the production
database - using ODBC as the transport method. This would appear to be an excellent solution,
as the developer can key all the business logic into SQL queries, and let the database report
back the data shape required for the warehouse.

Unfortunately, open connectors like ODBC and JDBC, as well as the default database unload
methods (like SQL SELECT to SPOOL) often take too much time to configure, and are inherently
slow for high volumes (even with parallel hints, and other tuning methods). Beyond a million
rows, a specialized, high-performance extraction tool can dramatically mitigate the unload
bottleneck, and facilitate downstream processing of the data.

FACT/Oracle Unload/ETL White Paper 2 Copyright 2007 IRI, Inc. All Rights Reserved

The Flat File Opportunity

Data warehouse experts like Ralph Kimball recommend staging large volumes of data in flat
files'. That is because the fastest sort, join, convert, aggregation, report, and reload processing
can occur through the file system, where unencumbered files (and the tools that manipulate
them) have access to disk, memory, and thread resources unfettered by application layers.
Data stored in proprietary formats and structured DBMS/ETL systems are optimized for queries
and graphical mappings, not for bulk transformations or loads.

Database and data warehousing technology expert Chuck Kelly further concurs. “Being able to
sort at a flat file level as opposed to at the ETL level, offers performance gains every time.
Using a flat file, in some cases, will be faster than using relational structures.” Furthermore,
“flat files are one of the few forms [of data] that all ETL processes and database systems can
read. This provides a de facto standard in moving data between different database systems.”

Using flat files, a database administrator (DBA) or a data warehouse engineer bypasses
the ETL tool overhead of database connections, network bandwidth, and stage-related
I/0s. Some ETL processes read a row, run it though a single transformation process,
and write a row to the next. However, quickly extracting data to flat files, and even
pushing or pulling the file to be executed on a local machine, if necessary, can create a
faster processing opportunity than more complex and expensive applications.

Extraction to Flat Files

Oracle’s export and Data Pump utilities output data in binary format, which is ideal for moving,
copying, or backing up database tables. Given the value of file system processing, however, a
logical goal is to find the most efficient way to extract the data out of Oracle into flat files,
perform all the required transformations, and send the data to its various targets.

Oracle guidelines state that “the most basic technique for extracting data is to execute a SQL
query in SQL*Plus and direct the output of the query to a file.” The sample SQL script below will
create a flat file called, country_city.log, with a pipe (|) delimiter between column values. The
file will contain a list of the cities in the US from the tables ‘countries’ and ‘customers’:

SET echo off SET pagesize 0

SPOOL country city.log

SELECT distinct tl.country name |[|'|'|]| t2.cust city
FROM countries tl, customers t2

WHERE tl.country id = t2.country id

AND tl.country name= 'United States of America';
SPOOL off

Unfortunately, SQL*Plus is designed for access to, and manipulation of, small amounts of
Oracle data, and as such, it carries overhead that makes the movement of bulk data inefficient.

Fortunately, the same SQL SELECT statement can be issued within a CoSort Fast Extract (FACT)
configuration file (in text based .ini or .xml format). A side-by-side comparison of the Oracle
Spool results against the OCI-based, parallel FACT tool shows the difference in unload speeds:

! Kimball, Ralph. “Is Data Staging Relational? Or does it have more to do with sequential
processing?” DBMS Magazine, April 1998
2 http://download-uk.oracle.com/docs/cd/B10501 01/server.920/a96520/extract.htm - 12623

FACT/Oracle Unload/ETL White Paper 3 Copyright 2007 IRI, Inc. All Rights Reserved

http://download-uk.oracle.com/docs/cd/B10501_01/server.920/a96520/extract.htm

2h OF mO9s

1h 03m 31s
25m 18s
I 17m 09s
m 5
— .
20,000,000 50,000,000 | 100,000,000 |

HP-UX B.11.11, Oracle 9.2, 50-byte VARCHAR
HP9000 L2000-44. 4 PA 8500 CPUs @ 440MHz. 8GB RAM

FAst extraCT (FACT) for Oracle, Unload-Only
Benchmarks vs. Oracle SOQL*Plus SPOOL

Fast Extract (FACT) for Oracle

FACT rapidly extracts tables to in a variety of portable, flat file formats. It allows DBAs and ETL
users to unload tables with more speed and reformatting functionality than other tools. Unlike
the proprietary format of Oracle's export or Data Pump utilities (which require its import
counterparts to load the data back), flat output files work with all databases and applications.

During unloads, FACT uses the table description to write the extract file’s field layouts into the
data definition file (DDF) format used by

e CoSort Sort Control Language, SortCL, for transformation, protection, and reporting
¢ The RowGen test data generation tool
e The Meta Integration Model Bridge (MIMB) for conversion into other tool metadata

The metadata for SortCL can be referenced in job specification files that define one or more
manipulations (such as a reorg or pre-load sort on the longest index key) and reports.

FACT also creates the control file metadata for SQL*Loader re-load operations:

ORACLE’ ORACLE

Single Pass Oracle ETL

Extract - Transform - Load /

FACT/Oracle Unload/ETL White Paper 4 Copyright 2007 IRI, Inc. All Rights Reserved

File System Transformations

Once the data is piped from the unload utility, it can be piped directly into a high-volume file
processor like CoSort’s Sort Control Language (SortCL) program to simultaneously perform a
number of critical selection, manipulation, protection and/or reporting functions. The external
file manipulation functions that SortCL can perform and combine include:

Filter At the byte, field and record level

Segment Conditional (include/omit) selection

Sort Multiple keys, directions, sequences

Merge Pre-sorted files

Join Sorted or un-sorted files over many conditions

Re-map Resize, reposition, and realign fields

Convert Change data types (e.g. EBCDIC®ASCII, Packed© Numeric)

Re-format / | Convert between file formats (e.g. Text©XML, VSRS, Micro Focus

Interchange | ;5AM©ACUCOBOL-GT Vision, LDIF©CSV, MFVLO Text)

Aggregate Parallel roll-up and drill-down sum, min, max, average, and count
values. Accumulation. Ranking.

Calculate Expressions and functions across detail and summary rows

Sub-string Perl-compatible regular expression (PCRE) logic for pattern
matching and other intra-field manipulations

Validate Check and realign characters to specifications (e.g. “isdigit")

Sequence For indexing and loading operations

Lookup Discrete field substitutions, pseudonymization, etc. using "SET" file
field dimensions

Protect Encrypt data at the field level and audit data security measures,
plus anonymization, de-identification, filtering, pseudonymization

Report Custom-formatted, segmented detail, delta, and summary targets

Transform Custom field-level user functions (e.g. data quality libraries)

Log XML audit trail records job specs for compliance verification, etc.

In the case of Fast Extract (FACT) for Oracle, the data definitions for SortCL are created
automatically, for use within one or more SortCL job specification files that accomplish the
functions above as needed. In addition to the pipe or flat file extracts from Oracle, SortCL can
integrate other data sources from other legacy index and flat files at the same time, mapping
across the field names common to each input, and producing new, integrated views of data and
meaningful reports that provide actionable business intelligence.

By piping the data directly from FACT into SortCL (which accepts standard input), you can save
the I/0 of intermediate transfer files. Similarly, SortCL can output sorted data into a named
pipe, or flat file, to accelerate loads into SQL*Loader and other RDBMS load utilities.

Pre-Sorted Loads

Per Oracle's Server Utilities Guide, pre-sorting improves the performance of direct path loads
and queries, and minimizes the temporary storage requirements during the load. Oracle's
internal block management is vastly improved by pre-sorting; the sorted sustained rate is
roughly twice that of the un-sorted sustained rate. In other words, SQL*Loader loads large data
sets faster when they are pre-sorted.

FACT/Oracle Unload/ETL White Paper 5 Copyright 2007 IRI, Inc. All Rights Reserved

According to Chuck Kelley, “having the data processed in sorted order with files being
merged/compared will provide impressive performance gains. If the table that you are
inserting into is clustered via a specific column or group of columns, then having them in sorted
order will increase load performance. With many data warehouses using data partitioning,
being able to break the file into multiple load streams based on the partitioning scheme will
allow multiple streams of load to be executed simultaneously.>”

To speed loads into Oracle:

1. Extract the table(s) to flat file(s) using CoSort’s FAst extraCT (EACT) tool for Oracle, SQL
select, or another unload utility;

2. Sort the flat file (or the pipe from FACT) on the longest index field, using a high-performance
sorting engine like CoSort’s SortCL program;

3. Use SQL*LOADER to load the sorted output file or named pipe**, with the argument
DIRECT=TRUE; and,

4. To create indexes during the load, use the clause SORTED INDEXES in the load control file.
To create the indexes after the load, use SQL CREATE INDEX with the NOSORT option.

Combined ETL and Reorg Processing

By running the optimized extraction, transformation, and loading steps together, data
warehouse ETL and database reorg operations can be improved dramatically.

01h.38m.58s Extract-Transform-Load Benchmark

fact | sortcl | sglldr
OOh:18m:00s

vSs.

Oracle insert into
01lh:38m:58s
18m:00s (select * ... order by)

Software Versions: FACT v1.12, CoSort
ORACLE v8.1, and Oracle 9i SQL*Plus

Source Data: ~ 50 million, 50-byte rows
(2.32 GB) sorted on 1 key

Test Hardware: ia64 hp server rx5670,
2 x1GhZ CPUs, 32GB RAM, HP-UX 11.23

3 Kelley has worked in some facet of the design and implementation phase of more than 50 data
warehouses and data marts

¢ According to data warehousing expert Dan Linstedt, “loading through a pipe directly into an RDBMS bulk-
load facility can be slower than staging to a flat file and blasting the bulk-load with buffering mechanisms”
if the data flowing through that pipe is too large for O/S resources to handle. If your data is too “fat” for
your pipe, direct the pre-sorted output to a flat file and load it in a separate step.

FACT/Oracle Unload/ETL White Paper 6 Copyright 2007 IRI, Inc. All Rights Reserved

This schematic explains the operational relationship between the elements discussed:

FAst E xtraCT (FACT) for Oracle
CoSORT SortCL Transform (DDL/DML)

SQL*R soader

ROBMS
You create: Table Data FACT creates:
SR Ly : for Extract
Inltrallf?[:li{;ﬂ File FAC Tf)m: e {conditionall FAst extraCT (FACT) v
CoSORT FAst extraCT unconditional) ¥

Input data
(flat files/
streams) .

4 L] [L e

' Sort vl Memge]0%

‘ll- IIIIII * ‘—- IIIIII * 1'\.
ommm———— s | ssomrw 3

¢ Jain Bl TR ' n
L - L ilter N

; sy
' : » Transform sortcl Data
sortcl Job Script (}RT (in a single pass COSORT's sortcl Using —s-| Defirlition

bl through the data) .oooe. | zee-- _ |_File (poF)
. C'Liﬁr':'ﬂ i E‘Reformat ' i
_______ - [—— !
" Cross- % | ©" Group/ % i
! Calculate ! | ® Aggregate) |
Output data i
(flat files/ i
streams) ;
v v
Empty Table for Load T
Loading SQL*Loader {up to 10X faster SQlL’Loader Using —m [. . File
(Piped ETL Only) with CoSORTed data) I
RDBMS
Table Data

The operational sample that follows demonstrates these concepts in action.

FACT/Oracle Unload/ETL White Paper 7 Copyright 2007 IR, Inc. All Rights Reserved

Step-by-Step Command Line Example

{Ater starting Oracle on Linux, we preview a fact table called 'orders', in order by "ORDER"'}

ORDER CUSTOMER EMPLOYEE SHIP_DATE FREIGHT
11073 Pericles Comidas clacas Fuller, Andrew 24 .95
11074 Simons bistro King, Robert 18.44
11075 Richter Supermarkt Callahan, Laura 6.19
11076 Bon app Peacock, Margaret 38.28
11077 Rattlesnake Canyon Grocery Davolio, Nancy 8.53

The purpose of this ETL example is to extract orders, sort it in customer order, and load it
into another table called orders_sorted. Each optimized E, T, and L step is also combined
into one I/O stream.

{We have created a single-pass ETL command, “script”, that runs from the shell, batch, etc.
[cosort@demo example]$ cat script

rm -rd stdout.dat ; fact —-c orders.ini ; mkfifo stdout.dat ; fact orders.ini |
sortcl /spec=sort_orders.scl & sqlldr scott/tiger control=stdout.ctl DIRECT=TRUE

where -c is a FACT execution option to create only the .ddf and .ctl (without extraction) based
on the orders.ini config file. This is necessary so that when the extraction for the piped
operation starts, sortcl can find its .ddf and SQL*Loader can find its .ctl immediately. }

[cosort@demo example]$ sh script
{Following is the screen output from the above; notice an inter-mixed process display}

FAst extraCT for Oracle v2.31 B8
Copyright 2007 CoSort Korea Ltd.

Check License OK
You are running in trial license mode

- ONLY legacy synchronous I/0 mode applied (slower)
- Your license duration is only 1 month

Initiating ...eveeeennnnennn.. OK

SQL*Loader: Release 9.2.0.1.0 - Production on Tue Oct 9 16:14:02 2007
Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.
Connected to:

Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production

With the Partitioning, OLAP and Oracle Data Mining options

JServer Release 9.2.0.1.0 - Production

Exporting To Standard Out

FACT/Oracle Unload/ETL White Paper 8 Copyright 2007 IRI, Inc. All Rights Reserved

CoSort Ver 9.1.1 D8040325-1715 (c) 1978-2007 IRI, Inc. WWW.COSOTrt.com
EST 04:14:02 PM Tue Oct 9 16:14:02 2007. #07118.9101 Monitor Level 5
<00:00:00.00> event (66): CoSort() process begins
<00:00:00.13> event (59): stdin infile opened
<00:00:00.14> event (63): ./CS00004145 workfile opened
63) :

(
(
(
<00:00:00.14> event (./CS01004145 workfile opened

OK
Releasing all resources OK
Reporting and Writing log OK

Refer to report file : stdout.log
Successfully Completed.

<00:00:00.18> event
<00:00:00.18> event

(10, 0 processed

(
<00:00:01.06> event (

(

(

5)

0): stdin infile closed

4): ./CS00004145 workfile deleted
<00:00:01.06> event 4)
<00:00:01.06> event 7)

./CS01004145 workfile deleted
CoSort () process ends

) O)Y O O)Y O

Load completed - logical record count 830.

{And that’s it ... the entire E-T-L operation completed in 1 second ...
with several additional, simultaneous Transforms/reports created too ... see below}

{Now, let’s prove it worked ... we log back into Oracle to see the new table, orders_sorted}

Connected to:

Oracle9i Enterprise Edition Release 9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production

SQL> select * from orders_sorted where customer like '%Wols%';

ORDER CUSTOMER EMPLOYEE SHIP_DATE FREIGHT
10870 Wolski Zajazd Buchanan, Steven 13-FEB-98 12.04
10998 Wolski Zajazd Callahan, Laura 17-APR-98 20.31
10792 Wolski Zajazd Davolio, Nancy 31-DEC-97 23.79
10374 Wolski Zajazd Davolio, Nancy 09-DEC-96 3.94
11044 Wolski Zajazd Peacock, Margaret 01-MAY-98 8.72
10906 Wolski Zajazd Peacock, Margaret 03-MAR-98 26.29
10611 Wolski Zajazd Suyama, Michael 01-AUG-97 80.65

7 rows selected.

SQL>exit

{So, a new (previously-created empty) table called “orders_sorted” has been loaded, in order
now by “CUSTOMER” and “EMPLOYEE” rather than by “ORDER”. This new index order
will speed queries, thanks to CoSort/sortcl, the Transform part of the operation; see
sort_orders.scl below.}

The next pages show what else was created, as well as the original ETL configuration files.

FACT/Oracle Unload/ETL White Paper 9 Copyright 2007 IRI, Inc. All Rights Reserved

{Here is the list of everything created during this 1-second ETL operation}

[cosort@demo example]$ 1ls -1t | more

total 1412

—IrW—rw-r-—-— 1 cosort cosort 2255 Oct 9 16:14 stdout.log
-rw-r--r—- 1 cosort cosort 7230 Oct 9 16:14 ordersl.out
-rw-r--r—- 1 cosort cosort 16 Oct 9 16:14 ordersZ.out
-rw-r--r—- 1 cosort cosort 75030 Oct 9 16:14 orders3.html
-rw-r--r—- 1 cosort cosort 52893 Oct 9 16:14 orders.csv
PIrwW-rw-r-—- 1 cosort cosort 0 Oct 9 16:14 stdout.dat
- rw-rw-r—- 1 cosort cosort 363 Oct 9 16:14 stdout.ctl
- Irw-rw-r—- 1 cosort cosort 195 Oct 9 16:14 stdout.ddf
“rW-YwW-r-—- 1 cosort cosort 710 Oct 4 14:27 sglnet.log
—TWXTWXT—X 1 cosort cosort 138 Oct 4 14:27 script
—rW—YW-r-—- 1 cosort cosort 607 Oct 4 15:50 orders.ini

{Below is the FACT configuration file that extracted the data from the original
“orders” table in Oracle, converted it to CSV (with a framed employee field),

and created the metadata files for CoSort’s sortcl and Oracle’s SQL*Loader}.
[cosort@demo example]$ cat script

rm -rd stdout.dat; mkfifo stdout.dat ; fact -c¢ orders.ini | sortcl /spec=sort_orders.scl

& sqlldr scott/tiger control=stdout.ctl DIRECT=TRUE

"orders.ini"
FACT initialization file for ETL example
gets run with fact emp.ini

DATABASE=0ORACLE

INSTANCE=test

USERID=FACT MANAGER

PASSWORD=alias

QUERY=SELECT * FROM orders

LOADTABLE=orders_ sorted

LOADTYPE=INSERT

sorted records from table orders will be

inserted into the newly-created table, orders sorted
OUTFILE=stdout

extracted output records to be streamed via unanamed
pipe into CoSort; sortcl ddf /FILE name will be stdin
VARIABLE

DELIM=,

FACT can also reformat output in CSV format, etc.
FRAMEFTELD=EMPLOYEE

Specifes the name of the column to be framed
FRAMECHAR="

Framed column to be enclosed in double quotes
FETCHSIZE=auto

DATAEXT=.dat

CTLEXT=.ctl

DDFEXT=.ddf

REPORTEXT=. log

FACT/Oracle Unload/ETL White Paper 10 Copyright 2007 IR, Inc. All Rights Reserved

{This is the CoSort Sort Control Language (SortCL) Data Definition File, automatically
created by FACT via the above config file, and which will be incorporated by reference into
the CoSort SortCL (transformation) job script that was separately created, sort_orders.scl
(shown below). This once-created, but centralized metadata is available for re-use, making
this, and another transformation or RowGen test data generation program, easier to code.}

[cosort@demo example]$ cat stdout.ddf

/FILE=stdin
/FIELD= (ORDER ID,POS=1,SEP="',")
/FIELD= (CUSTOMER, POS=2, SEP=", ")
/FIELD= (EMPLOYEE, POS=3, SEP=", ', FRAME=""")
/FIELD= (SHIP_DATE, POS=4,SEP="',")
/FIELD= (FREIGHT, POS=5, SEP=", ', NUMERIC)

{Notice Oracle’s column names and data types — VARCHAR to ASCII, for example.
FACT has also output the records in CSV format and protected the EMPLOYEE field’s
column.}

[cosort@demo example]$ cat sort orders.scl

{Below is the CoSort sort control language (sortcl) job specification (DML) file which was
created in advance to handle the pre-load sort transform (as well as other transforms and
reports) while data’s passing through ...)}

[cosort@demo example]$ cat script

rm -rd stdout.dat; mkfifo stdout.dat ; fact —c orders.ini | sortcl /spec=sort_orders.scl

& sqlldr scott/tiger control=stdout.ctl DIRECT=TRUE

/SPEC=stdout.ddf # calls metadata created by FACT (orders.ini)
/INFILE=stdin # streamedrecords from FACT (unnamed pipe)
/SORT
/KEY=CUSTOMER # primary key field for new Oracle table
/KEY=EMPLOYEE # secondary sort key, ascending
/OUTFILE=stdout.dat # streamed records to SQL*Loader (named pipe)

[cosort@demo example]$ cat stdout.ctl

{This is the Oracle SQL*Loader (sqlldr) control file automatically created by FACT via
the above config file, and which runs as the final Load step.}

[cosort@demo example]$ cat script

rm -rd stdout.dat; mkfifo stdout.dat ; fact —c orders.ini | sortcl /spec=sort_orders.scl

& sqlldr scott/tiger control=stdout.ctl DIRECT=TRUE

LOAD DATA
INFILE 'stdout.dat'

INTO TABLE orders_ sorted

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '""' AND '"'
TRAILING NULLCOLS

(ORDER_ID char

, CUSTOMER char

, EMPLOYEE char

’ SHIP_DATE DATE "SYYYYMMDDHH24MISS"
, FREIGHT DECIMAL EXTERNAL

)
{Note that FACT extracted the fixed table into CSV format; this output file is in the same
format as the records loaded into Oracle via stdout.dat.}

FACT/Oracle Unload/ETL White Paper 1 Copyright 2007 IR, Inc. All Rights Reserved

[cosort@demo example]$ more ordersl.out

{This is the first of several additional, optional transformations performed simultaneously with
the ETL operation. This formatted report is in the same customer/employee order, with
aggregation.}

Customer Employee Max Min Avg Ct
Alfreds Futterkiste Davolio, Nancy 69.53 1.21 37.60 6
Ana Trujillo Emparedados y helados King, Robert 43.90 1.61 24.36 4
Antonio Moreno Tagqueria Davolio, Nancy 84.84 4.03 38.36 7
Around the Horn Callahan, Laura 146.32 3.04 36.30 13
Berglunds snabbkop Buchanan, Steven 244.79 3.50 86.64 18
Blauer See Delikatessen Callahan, Laura 53.83 0.15 24 .04 7
Blondel pe et fils Buchanan, Steven 156.66 5.74 56.70 11
Bon app Buchanan, Steven 350.64 10.19 79.87 17
Boo Comidas preparadas Dodsworth, Anne 97.09 16.16 63.72 3
Bottom-Dollar Markets Davolio, Nancy 243.73 2.40 56.71 14
Bs Beverages Davolio, Nancy 123.83 2.17 28.13 10
Cactus Comidas para llevar Callahan, Laura 31.51 0.33 12.13 6
Centro comercial Moctezuma Peacock, Margaret 3.25 3.25 3.25 1
Chop-suey Chinese Buchanan, Steven 96.65 1.17 45.91 8
Comeio Mineiro Callahan, Laura 79.70 0.21 37.56 5
Consolidated Holdings Callahan, Laura 38.24 6.17 17.87 3

[cosort@demo example]$ more orders2.out
{This is the second of several more optional transformations performed simultaneously

with the ETL operation. This target is a just static summary of all freight charges.}
Total Freight Charges: 64,942.69

[cosort@demo example]$ more orders3.html

{In this third output, HTML tags were inserted in the sort_orders.scl job specification
file in order to produce this web-ready report. The next page shows it in a browser.}
<HTML><HEAD>

<TITLE>HTML produced by CoSort's SortCL Transform 4GL/Program</TITLE>
</HEAD>

<BODY><H2>Customer Freight Summary</H2>

Employee transactions; charges above $100 are shown in

green.

<TABLE CELLPADDING=4 CELLSPACING=1 BORDER COLS=5>
<TR>

<TD>Davolio, Nancy</TD>
<TD align=right> $69.53
<TR>

<TD>Davolio, Nancy</TD>
<TD align=right> $40.42
<TR>

<TD>Leverling, Janet</TD>
<TD align=right> $1.21
<TR>

<TD>Peacock, Margaret</TD>
<TD align=right> $61.02
<TR>

<TD>Peacock, Margaret</TD>
<TD align=right> $23.94

--More--(0%)

FACT/Oracle Unload/ETL White Paper 12 Copyright 2007 IR, Inc. All Rights Reserved

When you open orders3.html in a web browser, here’s what you see:
y Y y

Customer Freight Summary
Employee transactions; charges above $100 are shown in green.

Davolio, Nancy $69.53
Davolio, Nancy $40.42
Leverling, Janet $1.21
Peacock, Margaret $61.02
Peacock, Margaret $23.94
Suyama, Michael $29.46
Alfreds Futterkiste $225.58
King, Robert $1.61
Leverling, Janet $11.99
Leverling, Janet $43.90
Peacock, Margaret $39.92

Ana Trujillo Emparedados y helados $97.42

{And so on, to the end of the report ...}

Wilman Kala | $88.41

Buchanan, Steven $12.04
Callahan, Laura $20.31
Davolio, Nancy $23.79
Davolio, Nancy $3.94
Peacock, Margaret $8.72
Peacock, Margaret $26.29
Suyama, Michael $80.65

Wolski Zajazd $175.74

By cosort as of Oct/09/2007 04:14:03 PM.

{The user name and timestamp were ‘conversion specifiers’ in sortcl’s /FOOTREC statement.}

FACT/Oracle Unload/ETL White Paper 13 Copyright 2007 IRI, Inc. All Rights Reserved

{Following is the final log from FACT}

[cosort@demo example]$ more stdout.log

SQL*Loader: Release 9.2.0.1.0 - Production on Tue Oct 9 16:14:02 2007

Copyright (c) 1982, 2002, Oracle Corporation.

Control File: stdout.ctl

Data File: stdout.dat
Bad File: stdout.bad
Discard File: none specified

(Allow all discards)

Number to load: ALL

Number to skip: 0

Errors allowed: 50
Continuation: none specified
Path used: Direct

All rights reserved.

Table ORDERS SORTED, loaded from every logical record.

Insert option in effect for this table:

TRAILING NULLCOLS option in effect

Column Name

Position

INSERT

Len

Term Encl Datatype

ORDER_ID

CUSTOMER

EMPLOYEE

SHIP DATE
SYYYYMMDDHH24MISS O (")
FREIGHT

Table ORDERS_SORTED:
830 Rows successfully loaded.
0 Rows not loaded due to data

FIRST
NEXT
NEXT
NEXT

NEXT

errors.

* ok ko

, O(") CHARACTER O (")
, O(") CHARACTER O (")
, O(") CHARACTER O (")
, O(") DATE

, O(") CHARACTER O (")

0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Date cache:

Max Size: 1000
Entries : 387
Hits : 422
Misses : 0

Bind array size not used in direct path.

Column array Irows : 5000
Stream buffer bytes: 256000
Read buffer bytes: 1048576

Total logical records skipped:
Total logical records read:
830 Rows successfully loaded.
0 Rows not loaded due to data

0
830

errors.

0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

FACT/Oracle Unload/ETL White Paper

14

Copyright 2007 IRI, Inc. All Rights Reserved

Data cache:
Max Size:
Entries
Hits
Misses

100
38
42

0
9
2
0

Bind array size not used in direct path.
Column array
Stream buffer

Read

Total
Total
Total
Total
Total
Total

buffer

logical
logical
logical
logical
stream
stream

Run began on
Run ended on

Elapsed time
CPU time was:

rows
bytes:
bytes:

records
records
records
records
buffers
buffers

Tue Oct
Tue Oct

was:

5000
256000
1048576
skipped: 0
read: 830
rejected: 0
discarded: 0
loaded by SQL*Loader main thread: 1
loaded by SQL*Loader load thread: 0

09 16:14:02 2007
09 16:14:04 2007

00:00:01.78
00:00:00.08

FACT/Oracle Unload/ETL White Paper 15 Copyright 2007 IRI, Inc. All Rights Reserved

INNOVATIVE ROUTINES INTERNATIONAL (IRI), INC.
Suite 303, Atlantis Center
2194 Highway A1A
Melbourne, FL 32937-4932 USA
Phone 321-777-8889
Fax 321-777-8886
http://www.cosort.com

Trademarks: FACT is a trademark of IDS, Ltd. (CoSort Korea). CoSort is a registered trademark of
Innovative Routines International (IRI), Inc. RowGen, SortCL and Sortl are trademarks of IR, Inc. All other
brand or product names are, or may be trademarks, or registered trademarks, of their respective

holders/companies.

FACT/Oracle Unload/ETL White Paper 16 Copyright 2007 IR, Inc. All Rights Reserved

http://www.cosort.com/

