IRI Software Integration
With Oracle Job Scheduler

The CoSort Company

Integration with Oracle Job Scheduler 1 Copyright 2013 IRI, Inc. All Rights Reserved

Table of Contents

L@ A YT L 3
RE=Tel g T Ler= I g =Te {8 L= = o | o P 3
Yo = R =Te (ST =] 0 =T o | PP 3

Y81] 0 01> /2 P 4

=] 1= = 1 [0 o 1 5
Prepare the IRI WoOrkKbDeNCh. ... v e e s e s e e an e e e e ane e an e anneans 5
Create the Target table. .o e 5
Grant Java execution permissions for the Workbench..........ccoiiiiiii e 6
Create the runScript Java procedure in ORACLE........ciiiiii i e e aeeeas 6
Create the runCommand fuNCLioN iN OraClE.....ci it e e e enes 7

I T 0 0] 8
T o PP 8
WX Lo [g =Ta = 1 o= S 8
1o - o 9
FANT Y= o] o] LT o LT = I o o Yol <Y1 S 9
Create the runFlow procedure in OracCle. ...t e e e eenns 10
Create an Oracle scheduling JOb......ci e e e e e 11

L@ /== < o 1R 12
EXaMIPIE JOD. e e 13

L aY o= el foY o Xa 1Y o1=T g Ve 1= o Ton VAN o oYl =1 P 13
LG ST 1o < =1 o= 13
1 oTa [=T ol = oo | =] o 1R 14

Integration with Oracle Job Scheduler 2 Copyright 2013 IRI, Inc. All Rights Reserved

Overview

This document provides information about the invocation of IRI's data extraction and
transformation software (FACT and CoSort, respectively) from Oracle® Job Scheduler. It contains
specific technical descriptions, and explains how IRI tools can be used directly, indirectly, or
instead of more expensive or less efficient extraction and transformation functions in Oracle,
Teradata®, and DataStage®.

Technical requirement

CoSort (SortCL) and Oracle Jobs Scheduler Integration. CoSort (SortCL) can be executed from the
Oracle procedure language by adding a run command package. The package is a java class and is
loaded into Oracle using a run command.

The Oracle database and CoSort are included in one server installation. Oracle users have
permission to read, write, and execute a file.

Software requirement
¢ CoSort v8 or above
e IRI Workbench
e Oracle server version 10 or above

e Bash script or shell script available for Nix type server and bat script available for Windows
type server

e EasyShell

Integration with Oracle Job Scheduler 3 Copyright 2013 IRI, Inc. All Rights Reserved

Summary

The following diagram depicts the global concept of how to integrate your ETL process, define the
jobs schedule, and control the inter-job dependency process.

1. The job script of the ETL process (FACT, aggregate and loading) is created in the optional
IRI Workbench GUI. IRI Workbench is used to create job scripts in the SortCL language.

2. The Java procedure is a Java class that performs the execution of any windows command
execution outputs from FACT(.ini) files, Aggregate (.scl) files and Loader (.ctl) files.

3. The Oracle procedure is the Oracle subprogram that performs a specific action. You must
declare and define the procedure before it can be invoked. The Oracle procedure is used to
execute the process flow from ETL that you have created in IRI Workbench.

4. DBMS Scheduler is the Oracle package that provides a collection of scheduling functions
and procedures that are callable from any PL/SQL program.

IRl Workbench

Oracle Database

Integration with Oracle Job Scheduler 4 Copyright 2013 IRI, Inc. All Rights Reserved

Preparation

Prepare the IRI Workbench

1.
2.

Open IRI Workbench and create a new IRI project by clicking File>New>IRI Project.

In the Project name field, enter a name for your project, and then click Finish. We are
going to be using “"DemoOracle” throughout this tutorial.

Create a new folder within the project by clicking File>New>O0ther. In the list that
displays, click the arrow before General and then select Folder. Click Next.

Select your project name from the list as the parent folder. In the Folder name field, enter
ETL. Click Finish.

Create the target table

Make sure you are connected to your desired database with the appropriate connection profile

settings.

1. Create an SQL File by clicking File>New>O0ther, and then the arrow before SQL
Development. Select SQL File and click Next.

2. Select the project that you just created in the Enter or select the parent folder field,
and in the Field name field, enter TableItemsSummary.sqgl.

3. In the editing window, type the following and save the file.
CREATE TABLE SUM ITEM (
TRANSACTION DATE TIMESTAMP,
ITEM TYPE VARCHAR (20),
COUNT_ TRANSACTION NUMBER (22 , 0),
SUM ITEM NUMBER (22 , 0)
) ;

4. To execute the SQL file, right click on TableltemsSummary.sql in the Project Explorer and

click Execute SQL Files.

[Z, TableltemsSummary.sql 23

Connection profile j

Type: [Oracle_ll Tl Marne E

CREATE TABLE SUM_ITEM (
TRANSACTION DATE TIMESTAMP,

ITEM TYFE VARCHAR (20),

COUNT TRANSACTICN NUMBER (22 , 0),
5UM ITEM NUMBER (22 , 0)

)z

Integration with Oracle Job Scheduler 5 Copyright 2013 IRI, Inc. All Rights Reserved

Grant Java execution permissions for the Workbench
Make sure that you have the DBMS Java package installed on your machine.
1. Open the command line and connect to your database as the DBA.

2. Type the following command:
select role from dba roles where role like ’3%JAVA%’;

And then type:

GRANT JAVASYSPRIV TO <INSERT USERNAME>;
GRANT JAVAUSERPRIV TO <INSERT USERNAME>;

3. As the DBA, execute the following three commands:

EXEC DBMS JAVA.grant permission (‘<INSERT USERNAME>',
'java.io.FilePermission', '<<ALL FILES>>', 'read ,write, execute, delete');

EXEC DBMS JAVA.grant permission (‘<INSERT USERNAME>',
'SYS:java.lang.RuntimePermission', 'writeFileDescriptor', '*');

EXEC DBMS JAVA.grant permission (‘<INSERT USERNAME>',
'SYS:java.lang.RuntimePermission', 'readFileDescriptor', '*');

Create the runScript Java procedure in ORACLE

The purpose of this procedure is to run any windows command. This procedure is created as a
Java procedure in Oracle so that the output from the Java sources can be captured by any Oracle
operations. In this case, you will also be creating a function to capture any output from this Java
source called runCommand. If the output value is OK, then the windows command has been
successfully executed. If an error message is returned, then the process cannot be done by this
command.

1. Create an SQL File in your ETL folder called runScript.sql. In the Database server type
field, select your database and click Finish.

2. In the editing window, type the following code and save the file. Reconnect to the database
using the schema that was given permission for Java execution. Copy the code from the
runScript.sql file and paste it into the SQL*Plus command line. Keep the connection open
for later use.

CREATE OR REPLACE AND RESOLVE JAVA SOURCE NAMED "RUNSCRIPT" AS
import java.io.*;

public class runScript {
public static String run(String args) throws IOException{
String retVal = null;
int errorNum;
try
{
String cmd = args;
System.out.println("Starting the command..");
Process p = Runtime.getRuntime().exec("cmd /C " + cmd);
errorNum = p.waitFor(); // Wait for proc to complete.

Integration with Oracle Job Scheduler 6 Copyright 2013 IRI, Inc. All Rights Reserved

return retVal;

//command
if(errorNum != @)
{
retval = "ERROR";
}
else
{
retval = "OK";
}
}
catch(Exception e)
{
e.printStackTrace();
retval = e.toString();
}

//if errorNum does not equal © then there was an error while handling the

Create the runCommand function in Oracle

1. Create an SQL file in your ETL folder named runCommand.sql. In the Database server
type field, select your database, and then click Finish.

2. In the editing window, type the following code and save the file. Copy and paste the code

into the SQL*Plus command line again.

CREATE OR REPLACE FUNCTION runCommand

RETURN VARCHAR2 IS

LANGUAGE JAVA NAME 'runScript.run

/

Integration with Oracle Job Scheduler

(pCommand IN VARCHARZ2)

(java.lang.String) return java.lang.String ';

7 Copyright 2013 IRI, Inc. All Rights Reserved

ETL process

FACT
1.
2.

Create an INI file by clicking File>New>IRI>FACT Config File, and then click Next.

In the Folder field, select the project that you just created, and in the Field name field,
enter items.ini.

In the next few steps, enter your desired database connection settings and make sure that
the following options are corresponding with the following values.

Query = “SELECT * FROM ITEMS”
Outfile = items.dat

Outformat = Variable

Delim = ‘Y | '

Addlastdelim = No

Removelf = No

Framefield = items

Framchar = 7 " !

Aggregate

1.

Using the CoSort menu, create a new SCL script with the code shown below and run it as
an IRI job.

/INFILE = C:\IRI\CoSort95\workbench\workspace\DemoOracle\ETL\items.dat

/FIELD=(transaction_date , POSITION=1 ,SEPARATOR='|"', ISO DATE)
/FIELD=(item_type , POSITION=2 , SEPARATOR="'|")
/FIELD= (item size , POSITION=3 , SEPARATOR="'|")
/FIELD=(transaction id ,POSITION=4 ,SEPARATOR='|")
/FIELD= (total , POSITION=5 , SEPARATOR="]|")

/SORT
/KEY = transaction date

/KEY

item type

/OUTFILE = C:\IRI\CoSort95\workbench\workspace\DemoOracle\ETL\items.agg

/FIELD= (transaction date ,POSITION=1 ,SEPARATOR='|', ISO DATE)
/FIELD= (item_type , POSITION=2 , SEPARATOR='|")
/FIELD=(count item , POSITION=3 , SEPARATOR='|")
/FIELD=(sum_item , POSITION=4 , SEPARATOR="'|")

/COUNT count item BREAK transaction date OR item type
/SUM sum_item from total BREAK transaction date OR item type

/STAT = C:\IRI\CoSort95\workbench\workspace\Test2\ETL\books agg.stat

Integration with Oracle Job Scheduler 8 Copyright 2013 IRI, Inc. All Rights Reserved

Load

1. Load the data into the Oracle database by creating the following control (CTL) file called
items_agg.ctl. Right click on the ETL folder and click New>File.

LOAD DATA
INFILE 'C:\IRI\CoSort95\workbench\workspace\DemoOracle\ETL\items.agg'
APPEND

INTO TABLE SUM ITEM
FIELDS TERMINATED BY '|'
OPTIONALLY ENCLOSED BY '"'
TRAILING NULLCOLS
(
TRANSACTION_DATE TIMESTAMP "SYYYYMMDDHH24MISS.FF6",
ITEM TYPE,
COUNT_ ITME,
SUM_ITEM

2. Right click on the items_agg.ctl file and select Easy Shell>O0pen and run the following
command: sqlldr userid=<username>/<password> control=items_agg.ctl DIRECT=true

Assemble the ETL process

The steps of the ETL process are assembled into one Oracle procedure. This procedure can run

ETL processing and perform multiple jobs. The following diagram depicts how the process is
assembled.

Script Execution

RunFlow RunCommand RunScript

IRl Workbench

Integration with Oracle Job Scheduler 9 Copyright 2013 IRI, Inc. All Rights Reserved

The Java program runScript serves to run any windows commands, including FACT, sortCL, or
sqlldr. The Oracle function runCommand serves to capture any messages from the Java program
that are generated, either a success message or an error message.

The Oracle procedure runFlow serves to assemble the ETL process as an interrelated process. If
the previous processes failed, then the next process will not run.

Create the runFlow procedure in Oracle

1. Create an SQL file in your ETL folder called runFlow.sql. In the Database server type
field, select your database, and then click Finish.

2. In the editing window, type the following code and save the file. Also, open the database
connection under the user with permissions, and copy and paste the code into SQL*Plus.

CREATE OR REPLACE procedure runFlow as
retVal varchar2(10);
begin
dbms_output.put_line ('Start Process at :' || to_char (sysdate, 'yyyy-mm-dd
hh24:mi:ss'));
--start fact
retVal := null;
dbms_output.put_line ('Start Fact Processing...');
retVal := runCommand ('fact
C:\IRI\CoSort95\workbench\workspace\DemoOracle\ETL\items.ini");
if retvVal is null or retVal <> 'OK' then
dbms_output.put_line (retVal);
GOTO endProgram;
end if;
dbms_output.put_line ('End Fact Processing...');
-- Call sortcl and the scl file
dbms_output.put_line ('Start Aggregate Processing...');
retVal := null;
retVal := runCommand
("sortcl/spec=C:/IRI/CoSort95/workbench/workspace/DemoOracle/ETL/item_agg.scl');
if retVal is null or retVal <> 'OK' then
dbms_output.put_line (retval);
GOTO endProgram;
end if;
dbms_output.put_line ('End Aggregate processing...');
-- Start SQLLoader
dbms_output.put_line ('Start Load Processing...');
retval := null;
retval := runCommand ('sqlldr control=C:\IRI\CoSort95\workbench\workspace\DemoOr -
acle\ETL\items_agg.ctl userid=scott/tiger DIRECT=TRUE.');
if retvVal is null or retVal <> 'OK' then
dbms_output.put_line (retVal);
GOTO endProgram;
end if;
dbms_output.put_line ('End Load processing...');
dbms_output.put_line (retVal);
--Terminate program if error occurred or terminate regularly
<<endProgram>>
dbms_output.put_line ('End process at :'||to_char (sysdate, 'yyyy-mm-dd

Integration with Oracle Job Scheduler 10 Copyright 2013 IRI, Inc. All Rights Reserved

hh24:mi:ss'));
null;
exception
WHEN OTHERS THEN
dbms_output.put_line (sqlerrm);
end;

/

3. Open Easy Shell and connect to your database. Enter set serveroutput on; followed
by execute runFlow;

C:sUszserssIRIDEMO»sqlplus scott tiger

SOL*Plus: Release 11.2.8.1.8 Production on Fri Dec 6 18:48:58 2613
Copyright <c) 1982, 2018, Oracle. All rights reserved.

Connected to:
Oracle Database 11g Release 11.2.8.1.8 - Production

SQL> zet sepuverout on;

S0QL> execute runFlow;

Start Process at ::2013-12-66 10:41:23
Start Fact Processing...

End Fact Processing...

Start Aggregate Processing...

End Aggregate processing. ..

Start Load Processing...

Eﬂd Load processing...

End process at 2013-12-86 18:41:31

PLA/SQL procedure successfully completed.
SQL>

Note that it takes 9 seconds for the E, T, and L processing of 1 million records.

The dependencies of each process are determined by the retval parameter. If retVal contains
NULL values or does not contain the OK value, the process will not continue. It will continue if the
previous process has finished.

The result, output and statistics from the CoSort file will be created, and the result will be loaded
into the database.

The resulting output files created by FACT and CoSort are:
e items.dat - the result of the FACT table items
e items.agg - the result of aggregate data that was sorted
e SortCL job statistics file

Create an Oracle scheduling job

Use DBMS_JOB to create an oracle scheduling job and assign it the oracle procedure you
previously created.

Integration with Oracle Job Scheduler 11 Copyright 2013 IRI, Inc. All Rights Reserved

The dependencies of DBMS_JOB are:

dba_jobs
dba_jobs_running
all_jobs
all_jobs_running
user_jobs

user_jobs_running

and the following is the common interval table for assigning a job and date setting:

Interval Description
SYSDATE + 1 Execute daily
SYSDATE + 7 Execute once per week

SYSDATE + 1/24

Execute hourly

SYSDATE + 10/1440

Execute every 10 minutes

SYSDATE + 30/86400

Execute every 30 seconds

NULL

Do no re-execute

The line “v_date date := to_date('20130102 080000','vyyyymmdd hh24miss’);” is used to indicate
the specific date and time of execution. The first part inside the brackets indicates the date and
time while the second indicates the format. Therefore in this example it would execute on the
second of January 2013 at 8am.

Create job

1.

Create an SQL file in your ETL folder called jobSchedule.sql. In the Database server type
field, select your database, and then click Finish.

2. In the editing window, type the following code and save the file. Be sure to use your
preferred date and time.
DECLARE
JobNo user jobs.job%TYPE;
v_date date := to date('20130308 050000', 'yyyymmdd hh24miss') ;
BEGIN
dbms job.submit (JobNo, --Job ID
'begin runFlow; end;', -- Procedure to execute
v_date, -- start running at
'sysdate + 1' -- interval of jobs
) ;
COMMIT;
END;
/
Integration with Oracle Job Scheduler 12 Copyright 2013 IRI, Inc. All Rights Reserved

Example job

1. Assign the job to run every Tuesday at 8 am and every Friday at 3 pm.

DECLARE
JobNo user jobs.job%TYPE;
v_datel date
v_date2 date
BEGIN
dbms _job.submit (JobNo,
'begin runFlow; end;',
v _datel, -- start running at
'SYSDATE + 7' -- interval of jobs
)

--Job ID

COMMIT;
dbms job.submit (JobNo, --Job ID
'begin runFlow; end;', --
v_date2, -- start running at
'SYSDATE + 7' -- interval of jobs
)

COMMIT;

END;

/

to date('20130312 080000', 'yyyymmdd hh24miss') ;
to date('20130315 150000', 'yyyymmdd hh24miss') ;

-—- Procedure to execute

Procedure to execute

2. Check the job status by running this query:

select job, next date, next sec,

Inter-Job dependency process

broken,

interval, what from user jobs;

To further enhance the utility of the scheduler, you could create a process that would handle error
handling if a process during the procedure failed. You would need to create two items:

e table to store the process control

e modular program to handle step-by-step flow

Create Table

Create a table that will accommodate the command of a flow using the following table DLL:

create table flow process|(
fp id number, --Flow Process unique ID
fp name varchar2(100), --Flow Process Name

fp command varchar2(400), --Command
fp seq number, --Sequence Process
fp stat number --Sequence status

) ;

These tables define a certain flow of a process. The fp_command column is used to store the

command of a flow.

The column fp_stat will read the status of a process, and frs_desc provides a description of that

status.

Integration with Oracle Job Scheduler 13

Copyright 2013 IRI, Inc. All Rights Reserved

In this case, the fp_stat column will be filled with:
1
9

Done

Error

Insert into flow process(fp id, fp name, fp command, fp seq, fp stat)
values (1, 'Run Fact', 'RunPieces(''fact
C:\IRI\CoSort95\workbench\workspace\DemoOracle\ETL\items.ini"")"', 1, 1);

Insert into flow process(fp id, fp name, fp command, fp seq, fp stat)
values (2, 'Run SortCL', 'RunPieces(''sortcl
/spec=C:\IRI\CoSort95\workbench\workspace\DemoOracle\ETL\item sort.scl'')', 2, 1);

Insert into flow process(fp id, fp name, fp command, fp seq, fp stat)
values (3, 'Run Loader', 'RunPieces(''sqlldr userid=iriwb/iriwb@orcl
control=C:\IRI\CoSort95\workbench\workspace\DemoOracle\ETL\load agg.ctl

DIRECT=true'')', 3, 1);

Commit;

Modular Program

Since we already have a procedure to handle each ETL process respectively, we can modify our
current runFlow process to handle the errors.

CREATE OR REPLACE procedure runFlow as

retVal varchar2(10);
begin

dbms_output.put_line ('Start Process at :' || to_char (sysdate, 'yyyy-mm-dd
hh24:mi:ss'));

--start fact

retVal := null;

dbms_output.put_line ('Start Fact Processing...');

retVal := runCommand ('fact
C:\IRI\CoSort95\workbench\workspace\DemoOracle\ETL\items.ini');

if retVal is null or retVal <> 'OK' then

dbms_output.put_line (retVval);
Insert into scott.flow process(fp id, fp name, fp command, fp seq, fp stat)
values (1, 'Run Fact', 'RunProcess(''fact
C:\IRI\CoSort95\workbench\workspace\DemoOracle\ETL\items.ini"'")"', 1, 9);
GOTO endProgram;

end if;

Insert into scott.flow process(fp id, fp name, fp command, fp seq, fp stat)

values (1, 'Run Fact', 'RunProcess(''fact

C:\IRI\CoSort95\workbench\workspace\DemoOracle\ETL\items.ini"'")"', 1, 1);

dbms_output.put_line ('End Fact Processing...');

-- Call sortcl and the scl file

dbms_output.put_line ('Start Aggregate Processing...');

retVal := null;

retval := runCommand
("sortcl/spec=C:/IRI/CoSort95/workbench/workspace/DemoOracle/ETL/item_agg.scl');

Integration with Oracle Job Scheduler 14 Copyright 2013 IRI, Inc. All Rights Reserved

if retVal is null or retVal <> 'OK' then
dbms_output.put_line (retval);
Insert into scott.flow process(fp_id, fp_name, fp_command, fp_seq, fp_stat)
values(1, 'Run SortCL',
'RunProcess(' 'sortcl/spec=C:/IRI/CoSort95/workbench/workspace/DemoOracle/ETL/item_ag-
g.scl'')', 1, 9);
GOTO endProgram;
end if;
Insert into scott.flow_process(fp_id, fp_name, fp_command, fp_seq, fp_stat)
values(1, 'Run SortCL',
"RunProcess (' 'sortcl/spec=C:/IRI/CoSort95/workbench/workspace/DemoOracle/ETL/item_ag-
g.scl'")', 1, 1);
dbms_output.put_line ('End Aggregate processing...');
-- Start SQLLoader
dbms_output.put_line ('Start Load Processing...');
retval := null;
retval := runCommand ('sqlldr control=C:\IRI\CoSort95\workbench\workspace\DemoOr -
acle\ETL\items_agg.ctl userid=scott/tiger DIRECT=TRUE.');
if retvVal is null or retVal <> 'OK' then
dbms_output.put_line (retval);
Insert into scott.flow_process(fp_id, fp_name, fp_command, fp_seq, fp_stat)
values(1, 'Run SQL*Loader', 'RunProcess('' sqlldr control=C:\IRI\CoSort95\work-
bench\workspace\DemoOracle\ETL\items_agg.ctl userid=scott/tiger DIRECT=TRUE.)', 1, 9);
GOTO endProgram;
end if;
Insert into scott.flow process(fp_id, fp_name, fp_command, fp_seq, fp_stat)
values(1, 'Run SQL*Loader', 'RunProcess('' sqlldr control=C:\IRI\CoSort95\work-
bench\workspace\DemoOracle\ETL\items_agg.ctl userid=scott/tiger DIRECT=TRUE.)', 1, 1);
dbms_output.put_line ('End Load processing...');
dbms_output.put_line (retVal);
--Terminate program if error occurred or terminate regularly
<<endProgram>>
dbms_output.put_line ('End process at :'||to_char (sysdate, 'yyyy-mm-dd
hh24:mi:ss"));
null;
exception
WHEN OTHERS THEN
dbms_output.put_line (sqglerrm);
end;

/

Note that the only part modified was the added insert lines of the ETL process respectively. If
during the ETL process that step fails, then the insert into table line will set the status column to

9.

If the process however executes with no errors, then the status is set to 1.

Integration with Oracle Job Scheduler 15 Copyright 2013 IRI, Inc. All Rights Reserved

	Overview
	Technical requirement
	Software requirement

	Summary
	Preparation
	Prepare the IRI Workbench
	Create the target table
	Grant Java execution permissions for the Workbench
	Create the runScript Java procedure in ORACLE
	Create the runCommand function in Oracle

	ETL process
	FACT
	Aggregate
	Load
	Assemble the ETL process
	Create the runFlow procedure in Oracle
	Create an Oracle scheduling job
	Create job
	Example job

	Inter-Job dependency process
	Create Table
	Modular Program

