Data Blurring

 

Next Steps
Overview Blur Encode Encrypt Hash Pseudonymize Randomize Redact Scramble Shift Tokenize

Blurring and Generalization

Quasi-identifying values like age and date of birth, as well as descriptors like occupation and marital status, can all be used to re-identify people if there are enough of these attributes in the data set and/or the can be joined to a superset population with similar values.

For this reason, IRI FieldShield data masking jobs can apply one or more additional techniques to obfuscate the data, while still keeping it accurate enough for research or marketing purposes. Numeric "auto blurring" and "smart blurring" functions allow specific random values or values within normal distributions and defined ranges to create random noise for ages and dates.

In the example below however, specific ages are bucketed into decade groups, multiple marital status attributes are combined into two broader categories in a defined condition, educational attainments are simplified through a new set lookup file, and all occupations were explicitly redacted in place.

data blurring capabilities in IRI Workbench

The new result set can now be re-run through the risk scoring wizard to produce another determination of re-identification risk based on now less distinct quasi-identifying attributes.

Request More Information

Live Chat

* indicates a required field.
IRI does NOT share your information.